Применение альтернативных топлив на судах. Применение альтернативных видов топлива

Спустя 100-лет после полного отказа от парусников, в попытке уменьшить расходы на топливо, судостроительные компании снова возвращаются к использованию энергии ветра.
Вот несколько проектов транспортных судов, которые используют альтернативные источники для доставки грузов.

Eco Marine Power - солнечные панели работают как паруса



Японская компания Eco Marine Power (EMP) решила создать одновременно и парусное и высокотехнологичное судно, заменив традиционные паруса на .

EMP является инновационной компанией, которая применяет новые технологии к разработке и построению морских судов. Инженеры и исследователи компании поставили перед собой цель разработать более экологически чистые двигатели для морского и речного транспорта, чтобы снизить как традиционных источников энергии, так и уменьшить вред, наносимый от их использования окружающей среде.

Вместо традиционных парусов они использовали управляемые солнечные батареи. Во-первых, их большая площадь и наличие управляемого поворотного механизма позволит использовать панели как обычные паруса. А во-вторых, накопленная за период плавания электрическая энергия будет расходоваться для питания двигателей при маневрировании судна в порту.

Поворотная система каждой солнечной панели позволяет выставлять ее идеально по ветру или же убирать совсем при непогоде. В сложенном горизонтальном положении солнечные панели все равно окажутся повернутыми активными поверхностями к солнечному свету и будут дополнительно заряжать бортовые аккумуляторные батареи.

Представители EMP утверждают, что жесткость и надежность конструкции их высокотехнологичных парусов сможет выдержать даже очень сильный шторм на море, а следовательно судно будет оставаться на плаву и двигаться по утвержденному курсу даже тогда, когда обычные парусные суда этого сделать не смогут. Кроме этого новые паруса требуют минимального технического обслуживания.
Инженеры EMP подсчитали, что оснащение обычного судна такими своеобразными парусами снизит расход топлива на 20 %, а если при этом оснастить корабль еще и дополнительными электромоторами, то расход будет уменьшен почти наполовину – примерно на 40 %.

За последние двадцать лет автомобильная промышленность достигла огромных результатов по снижению содержания вредных веществ в отработавших газах. Запрет на использование этилированных бензинов, применение каталитических нейтрализаторов отработавших газов и современных систем питания ДВС, позволили существенно уменьшить вредное воздействие автомобильного транспорта на окружающую среду и здоровье человека.
При работе автомобильных ДВС в атмосферу выбрасываются не только токсичные газы, но и двуокись углерода (СО 2).
Двигатели современных автомобилей стали более экономичными, а это привело к уменьшению выбросов двуокиси углерода. Применение альтернативных видов топлива также способствует как снижению вредных веществ в отработавших газах, так и снижению количества двуокиси углерода.
Сжиженные нефтяные газы (LPG - Liquefied Petroleum Gas) дают возможность снизить содержание вредных веществ в отработавших газах и одновременно примерно на 10% уменьшить количество СО 2 , выделяемого при работе ДВС.
Сжатый природный газ (CNG - Compressed Natural Gas) - это альтернативное топливо, которое может использоваться в ДВС с искровым зажиганием и в дизелях. Для использования в качестве топлива в ДВС он должен быть сжат до высокого давления, чтобы занимать меньший объем. Этот газ может транспортироваться в баллонах высокого давления. При его использовании в качестве топлива, обеспечивается снижение выбросов вредных веществ в атмосферу.
Метанол (Methanol) - спиртовое топливо, получаемое в процессе переработки нефти или каменного угля. При использовании метанола в качестве топлива для ДВС обеспечивается снижение уровня двуокиси углерода в отработавших газах на 5% по сравнению с бензином. Однако для получения той же мощности требуется вдвое большее количество топлива, чем при использовании бензина.
Этанол (Ethanol) - спиртовое топливо, получаемое из растений, таких как кукуруза, сахарный тростник и др., имеет примерно такие же свойства, как метанол и производит при сгорании меньшее количество оксидов азота и снижение содержания двуокиси углерода на 4% по сравнению с бензином. Отработавшие газы ДВС, работающего на этаноле, содержат вредные альдегиды, которые обладают неприятным запахом, вызывают раздражение слизистых оболочек организма человека и не могут быть устранены с помощью каталитических нейтрализаторов.
Водород (Н 2) - горючий газ, который при сгорании соединяется с кислородом образуя воду. Водород является наиболее перспективной альтернативой углеводородным видам топлива. Водород также является перспективным топливом для использования в силовых установках на топливных элементах.
Перечисленные альтернативные виды топлива могут в отдельных случаях, использоваться для автомобильных двигателей. Многие производители автомобилей имеют в своей программе выпуск автомобилей, которые могут использовать альтернативные виды топлива. Наиболее распространены автомобили, которые могут использовать наряду с бензином сжиженный газ или природный сжатый газ.


Автомобиль Mini Cooper, с двигателем, работающем на водороде

Двигатели опытных автомобилей BMW 750hL и Mini Cooper Hydrogen оборудованы системой впрыска жидкого и охлажденного водорода, смешивающегося с воздухом во впускном трубопроводе. Такой подход дает возможность улучшить наполнение цилиндров ДВС топливновоздушной смесью и свести до минимума загрязнение окружающей среды.
Использование альтернативных видов автомобильного топлива может несколько замедлить перспективу исчерпания мировых запасов нефти, но полностью не решает данной проблемы. Поэтому большинство ведущих мировых производителей автомобилей сейчас вплотную занимаются разработкой силовых установок, где используются альтернативные источники энергии.

УДК 629.735;

АНАЛИЗ ОПЫТА ПРИМЕНЕНИЯ АЛЬТЕРНАТИВНЫХ ТОПЛИВ НА ВОЗДУШНЫХ СУДАХ

Д.Р.САРГСЯН

Статья представлена доктором технических наук, профессором Зубковым Б.В.

В статье анализируется опыт применения альтернативных топлив на воздушных судах, виды и особенности топлив. Описываются требования к СПГ и обеспечению БП.

Ключевые слова: альтернативное топливо, виды альтернативных топлив, сжиженный природный газ (СПГ), безопасность полетов (БП).

Введение

Постоянно нарастающий спрос на авиаперевозки за последние годы развития экономики, а также техники и технологий вызвало большую потребность топливных ресурсов. Вследствие чего инженеры многих ведущих авиастроительных компаний в разных странах, в том числе и в России, начали разработки по обеспечению авиации новым видом топлива. Рассматривается огромное количество альтернатив керосину: биотопливо, синтетическая нефть, сжиженный природный газ (СПГ), водород. Весь накопившийся опыт с момента первого в мире полета на альтернативном топливе (самолета Ту-155 в 1988 году) показывает эффективность, экономичность и экологичность разработок в данном направлении.

В российской авиации рассматривается возможность использования СПГ, в частности, из-за запасов природного газа, а также сопутствующие нефтедобыче газы, которые сжигаются в факелах месторождений при добыче нефти. На данном этапе развития гражданской авиации наиболее близки к реализации проекты вертолетов и самолетов, которые применяют в качестве топлива сжиженные попутные газы, получаемые при добыче нефти (пропан и бутан).

Переоборудование воздушных судов требует минимальных затрат - лишь переделки топливных баков и системы подачи топлива в двигатели. Также требуется обеспечить аэропорты криогенными заправочными станциями, хранилищем топлива и инфраструктуры доставки СПГ до хранилищ. На данном этапе требуется не только участие авиапромышленного комплекса, но и участие газодобывающих компаний для создания соответствующей инфраструктуры.

Опыт применения

Альтернативу авиакеросину начали искать еще в середине ХХ века. История работ в ОКБ А.Н. Туполева по альтернативным видам топлива уходит в 60-е гг. - уже тогда рассматривалась возможность перевода силовых установок проектируемых в ОКБ А.Н. Туполева самолетов на жидкий водород.

В середине 70-х гг. Академией наук СССР совместно с рядом научно-исследовательских институтов и конструкторских бюро была разработана программа научно-исследовательских и опытно-конструкторских работ по широкому внедрению альтернативных видов топлива в народное хозяйство. Так 15 апреля 1988 года впервые поднялся в небо Ту-155 с экспериментальным двигателем НК-88 на криогенном топливе, который выполнил на СПГ и водороде почти 100 полетов. В октябре 1989 года этот самолет совершил показательный перелет по маршруту Москва-Братислава-Ницца (Франция) на 9-й Международный конгресс по природному газу. В июле 1991 г. самолет совершил полет по маршруту Москва- Берлин для участия в Международном конгрессе по природному газу.

При разработке этого самолета была создана экспериментальная база для испытания крио-

генного оборудования и сложился единственный в мире коллектив высококвалифицированных специалистов в области криогенной авиации. В результате этой работы были определены пути создания самолетных и аэродромных криогенных систем и оборудования. Однако в ОКБ А.Н.Туполева продолжились работы в этом направлении, на уровне технических предложений разработаны проекты модифицированных криогенных самолетов Ту-204 (Ту-204К), Ту-334 (Ту-334К), Ту-330 (Ту-330СПГ), нового регионального самолета Ту-136. Кроме того, эти самолеты будут способны одновременно применять альтернативные топлива и авиационный керосин, что делает их более универсальными и надежными. Наиболее глубоко проработаны модификации самолета Ту-204 (Ту-204К) и проект нового регионального самолета Ту-136, учитывающий особенности криогенного топлива (рис. 1).

Топливная экономичность самолетов Ту-334К и Ту-330СПГ практически не будет отличаться от базовых Ту-334 и Ту-330. Все эти самолеты могут быть переоборудованы под применение СПГ в течение 3-4 лет. Особое внимание заслуживает проект грузопассажирского регионального криогенного самолета Ту-136 с двумя турбовинтовыми двигателями ТВ7-117СФ, способного при небольших доработках применять СПГ, жидкий водород и пропан-бутановое топливо.

Виды и особенности альтернативных топлив

Самым распространенным альтернативным топливом можно считать сжиженный природный газ (СПГ). Газ относится к категории криогенных топлив. Теплофизические и теплотехнические характеристики показывают ряд преимуществ авиационных сконденсированных топлив (АСКТ) перед традиционным авиакеросином ТС-1. Также существуют синтетические топлива, получаемые из угля, газа, биомасс и растительного масла. Но синтез таких веществ требует дополнительных затрат на переработку угля, биомасс и растительных масел, что дороже керосина, и ему сопутствуют те же проблемы ресурсов и экологии. Поэтому оно вряд ли может рассматриваться как перспективное. Спирты (этиловый и метиловый) и аммиак также могут заменить керосин, но они почти в два раза уступают ему по

теплоте сгорания, следовательно, их удельный расход будет больше. Кроме того, в выхлопе при сгорании этих топлив содержатся вредные окиси азота и углерода.

В качестве альтернативы керосина для авиации может быть рассмотрено криогенное топливо - жидкий водород Н2 и легкие углеводороды от метана СН4 до пентана С5Н12.

К преимуществам водорода как авиационного топлива можно отнести следующее:

Во-первых, наибольшую теплоту сгорания на единицу массы, что дает удельный расход топлива примерно в три раза меньший, чем у керосина. Это позволяет существенно улучшить летно-технические характеристики самолетов;

Во-вторых, наибольший хладоресурс на единицу массы (в 12-15 раз больше, чем у керосина), что можно эффективно использовать для охлаждения горячих деталей двигателя и самолета;

В-третьих, повышенную температуру самовоспламенения и меньшую излучательную способность, что положительно скажется на работе камеры сгорания.

Однако водородному топливу присущи недостатки, требующие решения сложных технических проблем. Жидкий водород серьезно уступает стандартным авиакеросинам по объемной теплоте сгорания из-за низкой (почти в 11 раз меньше, чем у керосина) плотности, что значительно ухудшает габаритно-весовые характеристики ЛA при переходе с авиакеросина на водород.

Преимущества легких углеводородов также относиться к категории преимуществ водорода, но отличаются доступностью и дешевизной получения (табл. 1).

Таблица 1

Теплофизические и теплотехнические характеристики водорода, углеводородных компонентов АСКТ и авиационного топлива ТС-1

Показатель Н (водород) СН4 (метан) С2Н6 (этан) С3Н8 (пропан) С4Н10 (бутан) С5Н12 (пентан) ТС-1

М 2,016 16,04 3007 44,10 5812 7215 140

t пл., С -259,21 -182,49 -183,27 -187,69 -138,33 -129,72 -60

С -252,78 -161,73 -88,63 -42,07 -0,50 36,07 180

t ж.с., C 6,43 20,76 94,64 145,62 137,83 165,79 290

пл. кг/м 77,15 453,4 650,7 733,1 736,4 762,2 835

кип., кг/м 71,05 422,4 546,4 582,0 601,5 610,5 665

Qн,кДж/кг 114480 50060 47520 46390 45740 45390 43290

Qv.пл, кДж/дм 8832 22700 30920 34010 33680 34550 36150

Qv,кип, кДж/дм 8136 21150 25970 27000 27530 27710 28900

Нисп, кДж/кг 455,1 511,2 485,7 424,0 385,5 3575 287

и, С 510 542 518 470 405 284 -

^н, см/с 267 33,8 40,1 39,0 37,9 38,5 39

Сн, %(об) 4,1 5,3 3,0 2,2 1,9 - 1,2

Св,%(об) 75,0 15,0 12,5 9,5 8,5 - 7,1

Ro, Дж/(кг С) 4157,2 518,8 276,7 188,6 143,2 115,5 59,4

Lо, кгвозд/кгтопл 34,5 17,19 16,05 15,65 15,42 15,29 -

СПГ - (метан) его плотность (даже при температуре кипения) в 1,7 раза больше, чем у керосина, что приводит к необходимости увеличения объемов топливных баков более чем в 1,5 раза (при равной энергоемкости). Кроме того, метан имеет очень низкий диапазон нахождения в жидкой фазе (-20 С), низкую критическую температуру (-82,6 С). Это вызывает необходимость

создания для баков, арматуры и коммуникаций топливных магистралей новых хладостойких конструкций у уплотнительных материалов, а также высококачественной низкотемпературной теплоизоляции, предотвращающей быстрое вскипание метана и обледенения конструкции.

В отличие от керосина, метан в камеру сгорания двигателя для исключения двухфазного состояния придется подавать в газообразном виде, что полностью исключает использование штатных топливных агрегатов, коммуникаций, коллекторов и форсунок. Это значительно усложняет конструкцию двигателя, а в ряде случаев делает невозможной его модификацию для питания двумя видами топлива.

Из-за этих же свойств жидкого метана потребуются весьма громоздкие и дорогостоящие наземные средства для его транспортировки, хранения, заправки и т.д., близкие по своим параметрам к водородным. Дооборудование криогенно-топливной базы аэропорта должно включать в себя специальные хранилища, оборудованные тепловой защитой, средствами поддержания криогенного состояния топлива и устройствами, предотвращающими его потери, а также сеть приемораздаточных устройств, парк специальных транспортных средств с теплоизолированными емкостями и т.п.

В то же время по массовой теплоте сгорания метан превосходит керосин на 14%, что обеспечит дальность полета и полезной нагрузки. Сжиженный метан имеет охлаждающую способность в 5 раз выше, чем у керосина, что позволяет использовать хладоресурс для охлаждения деталей и узлов двигателя. Опыт эксплуатации газотурбинных двигателей, применяемых в качестве нагнетателей на компрессорных станциях газопроводов и работающих на природном газе, показал, что срок службы таких двигателей увеличивается на 25%.

Безопасность полетов при применении СПГ

К основным видам опасностей, создаваемых специфическими свойствами, сжижению углеводородных газов, в том числе и СПГ, а также условиями их производства, хранения, транспортировки и заправки относятся: огнеопасность (пожароопасность), взрывоопасность, химическая активность, воздействие низких температур, токсичность. Правила безопасности при производстве, хранении и выдаче сжиженного природного газа (СПГ) на газораспределительных станциях магистральных газопроводов (ГРС МГ) и автомобильных газонаполнительных компрессорных станциях (АГНКС) содержат организационные, технические и технологические требования по организации безопасности производства, выполнение которых является обязательным для всех предприятий, производящих и перевозящих СПГ, при проектировании и эксплуатации комплексов по производству, хранению и выдаче СПГ.

Для обеспечения безопасной эксплуатации такого топлива необходимо располагать качественными и количественными методами оценки и сравнения каждого вида опасности. Качественная и количественная оценка, т.е. определение вида и степени опасности, позволяет провести сравнительный анализ сконденсированного топлива по критериям опасности, и в перспективе формализовать задачу выбора технических средств и методов безопасной эксплуатации топливных систем, использующих СПГ, а также его хранения и транспортировки.

Требования к кандидатам на получение Сертификата технической подготовленности обслуживанию самолета предъявляются по тем характеристикам, которые непосредственно влияют на обеспечение безопасности полетов и на выполнение производственных заданий в установленные сроки.

К ним относятся:

А - возраст;

Б - психофизическая способность выполнять предстоящую работу;

В - базовая подготовка (вуз, училище, техникум, профтехучилище и т.п.);

Г - специальная подготовка для работы на данном виде воздушного судна или AT, знание конкретной авиационной техники, назначения и содержания её технического обслуживания, технологии выполнения и контроля качества работ на ней, применяемого оборудования;

Д - умение выполнять работы, предусмотренные функциями, право на осуществление которых представляет запрашиваемый Сертификат;

Е - общий опыт работы на авиационной технике.

Как показал анализ требований по безопасной эксплуатации самолета Ту-154 при заправке и хранении топлива (СПГ), инженерно-технический персонал ИАС должен знать особенности применения этого вида топлива.

ЛИТЕРАТУРА

1. Альтернативные виды авиационного топлива / Материалы совещания по международной авиации и изменению климата. Документ ИКАО HLM-ENV/09-WP/9.- Монреаль, 10.08.09.

2. www.tupolev.ru Криогенная техника.

3. Правила безопасности при производстве, хранении и выдаче сжиженного природного газа (СПГ) на газораспределительных станциях магистральных газопроводов (ГРС МГ) и автомобильных газонаполнительных компрессорных станциях (АГНКС) ПБ 08-342-00.

ANALYSIS EXPERIENCE OF ALTERNATIVE FUELS ON AIRCRAFT

In article the technique of carrying out of expert estimations of activity of aviation enterprise of the civil aircraft directed on increase of level of safety of flights is presented.

Key words: increase of level of safety of flights, questioning, aviation enterprises, expert estimations.

Саргсян Давид Робертович, 1982 г.р., окончил МГТУ ГА (2010), аспирант МГТУ ГА, автор 2 научных работ, область научных интересов - безопасность полетов, альтернативное топливо, ремонт и модернизация ВС.

В связи с наличием на крупном судне нескольких энергетических установок, например, главного двигателя, дизель-генератора для выработки электроэнергии, котла для производства горячей воды и пара, судовое топливо может быть представлено сразу несколькими видами.

Более того, главный двигатель морского судна нередко запитывают не одним, а двумя и более видами топлива попеременно. Это связано с тем, что в океане существуют зоны особого контроля выбросов серы - Северное и Балтийское море, атлантическое и тихоокеанское побережья США и Канады.

При подходе к ним двигатели переводят на дизельное топливо с малым содержанием серы. Этот же приём используют перед выполнением манёвров, в которых приходится часто менять режимы двигателя. После выхода из порта дизельное топливо заменяют мазутом, на котором судно проходит главную часть пути.

Виды топлива для судоходства

Основными видами топлива для судов сегодня являются:

  • дизельное топливо;
  • высоковязкие виды судового топлива;
  • другие виды (КСТ - компонент судового топлива из газового конденсата, нефтяное газотурбинное ТГ и ТГВК, СПГ - сжиженный природный газ и т. д.)

Дизельное и маловязкое топлива относятся к светлым нефтепродуктам. Они отличаются друг от друга стоимостью (СМТ намного дешевле), а также техническими характеристиками.

СМТ содержит больше серы (от 0,5 до 1,5 % против 0,01 %), имеет более низкое цетановое число (40 против 45). Основной выигрыш при замене дизельного топлива маловязким состоит в дешевизне последнего, а также в том, что при отсутствии серы в дизельное топливо для сохранения смазывающих свойств нужно вводить специальные дорогостоящие присадки.

Высоковязкие виды судового дизельного топлива относятся к тёмным сортам нефтепродуктов. Они дешевле светлых, поэтому широко применяются для судоходствасудоходства . Подразделяются на лёгкие, тяжёлые и сверхтяжёлые. К этим видам принадлежат флотские мазуты Ф-5 и Ф-12, топочные мазуты М-40 и М-100, судовое топливо ИФО-30, ИФО-180, ИФО-380. Они вырабатываются смешением остаточных нефтепродуктов с дизельными фракциями. Применяются тёмные сорта в малооборотных и среднеоборотных двигателях.

О хранении и подготовке судового топлива

Для хранения топлива на судне используют топливные бункеры, расположенные рядом с машинным отделением. Крупное судно может расходовать до 40 т топлива в сутки, однако лишнего горючего, за исключением аварийного запаса на случай штормов, в рейс не берут, поскольку оно создаёт балласт и уменьшает полезную загрузку судна. К балласту относят и мёртвый запас топлива на судне - остатки в бункерах ниже заборных патрубков.

Перед использованием нередко мазуты подвергают особым операциям подготовки. Они состоят:

  1. В разогреве топливной массы холодного мазута, потерявшего текучесть, путём доливки в цистерну горячего мазута. Разогрев осуществляют и в цистернах, оборудованных специальными нагревательными системами.
  2. Очистке путём отстаивания или сепарирования в специальных судовых установках; при этих процессах отделяется грязь, механические включения и вода. Очищенное топливо меньше изнашивает двигатели, поэтому установки очистки с лихвой окупаются.

Сегодня существует множество сортов дизельного и других видов топлива для судна. Чтобы избегать ошибок при закупках, старайтесь приобретать ГСМ только у проверенных поставщиков.

Перспективы альтернативного топлива таковы, что уже сегодня мировые автопроизводители говорят о внедрении к 2010 году порядка 50 различных моделей, работающих на альтернативном виде горючего. В Европе особенно активны в этой области компании Mercedes-Benz, BMW, MAN. А к 2020 году, согласно резолюции ООН, нацелившей страны Европы на переход автомобилей на альтернативные виды моторного топлива, ожидается увеличение ТС на альтернативных видах топлива до 23% всего автопарка, из них 10% (порядка 23,5 млн. единиц) - на природном газе.

ТС на биотопливе

Биотопливо - использование биотоплива, например этанола (этилового спирта) или дизельного топлива (биодизеля), полученного из специально выращенных растений, обычно рассматривают как важный шаг к сокращению выбросов углекислого газа (СО2) в атмосферу. Конечно, при сжигании биотоплива углекислый газ попадает в атмосферу совершенно так же, как и при сжигании ископаемого топлива (нефти, угля, газа). Разница в том, что образование растительной массы, из которой было получено биотопливо, шло за счет фотосинтеза, то есть процесса, связанного с потреблением СО2. Соответственно, использование биотоплива рассматривается как «углерод-нейтральная технология»: сначала атмосферный углерод (в виде СО2) связывается растениями, а потом выделяется при сжигании веществ, полученных из этих растений. Однако стремительно расширяющееся производство биотоплива во многих местах (прежде всего в тропиках) ведет к уничтожению природных экосистем и утере биологического разнообразия.

Двигатели, работающие на биотопливе, используют энергию солнечного света, запасенную растениями. Энергия ископаемого топлива - это связанная энергия солнечного света, а выделяющийся при сжигании ископаемого топлива углекислый газ когда-то был изъят из атмосферы растениями и цианобактериями. Биотопливо ничем не отличается от обычного ископаемого топлива. Но разница есть, и определяется она временной задержкой между связыванием СО2 в ходе фотосинтеза и выделением его в процессе сжигания углеродосодержащих веществ. Кроме того, если связывание углекислого газа происходило в течение очень длительного времени, то высвобождение происходит очень быстро. В случае же использования биотоплива временной лаг совсем небольшой: месяцы, годы, для древесных растений - десятилетия.

При всех плюсах использования биотоплива быстрое увеличение его производства чревато серьезными опасностями для сохранения дикой природы, особенно в тропиках. В последнем номере журнала Conservation Biology появилась обзорная статья, посвященная вредным последствиям использования биотоплива. Ее авторы, (Martha A. Groom), работающая в рамках Междисциплинарной программы наук и искусств Вашингтонского университета в Ботелле (США), и ее коллеги Элизабет Грэй и Патрисия Таунсенд, проанализировав большой массив литературы, предложили ряд рекомендаций по тому, как сочетать получение биотоплива с минимизацией отрицательного воздействия на окружающую среду, с сохранением биоразнообразия окружающих природных экосистем.

Так, по мнению Грум и ее коллег, вряд ли заслуживает одобрения принятая во многих странах, и прежде всего в США, практика использования кукурузы как сырья для получения этанола. Культивирование кукурузы само по себе требует большого количества воды, удобрений и пестицидов. В результате, если учесть все затраты на выращивание кукурузы и производства из нее этанола, то окажется, что в сумме количество СО2, выделяющегося при изготовлении и использования такого биотоплива, почти такое же, как при использовании традиционного ископаемого топлива. Для этанола из кукурузы коэффициент, оценивающий выделение парниковых газов на определенный энергетический выход равен 81-85. Для сравнения, соответствующий показатель для бензина (из ископаемого топлива) составляет - 94, а для обычного дизельного топлива -83. При использовании сахарного тростника результат уже существенно лучше - 4-12 кг СО2/МДж.

Настоящий положительный скачок наблюдается при переходе к использованию многолетних трав, например одного из видов дикого проса - так называемого проса прутьевидного, обычного растения высокотравных прерий Северной Америки. Благодаря тому, что значительная часть связанного углерода запасается многолетними травами в их подземных органах, а также накапливается в органическом веществе почвы, территории, занятые этими высокими травами, функционируют как места связывания атмосферного СО2. Показатель эмиссии парниковых газов при получении биотоплива из проса характеризуется отрицательной величиной:

24 кг СО2/МДж (то есть СО2 становится меньше в атмосфере).

Еще лучше удерживает углерод многовидовой растительный покров прерий. Показатель эмиссии парниковых газов в этом случае также отрицательный:

88 кг СО2/МДж. Правда продуктивность таких многолетних трав относительно низкая. Поэтому и количество топлива, которое может быть получено с естественной прерии, составляет всего около 940 л/га. Для проса эта величина достигает уже 2750-5000, для кукурузы - 1135-1900, а для сахарного тростника - 5300-6500 л/га.

Очевидно, что замещая ископаемое топливо и снижая таким образом рост СО2 в атмосфере, биотопливо на самом деле может угрожать многим природным экосистемам, прежде всего тропическим. Дело, конечно, не в самом биотопливе, а в неразумной политике его производства. В уничтожении богатых видами природных экосистем и заменой их крайне упрощенными экосистемами сельскохозяйственных угодий. Большие надежды разработчики возлагают на использование в качестве сырья для биотоплива массы микроскопических планктонных водорослей, которые можно выращивать в специальных биореакторах. Выход полезной продукции на единицу площади при этом значительно выше, чем в случае наземной растительности.

В любом случае, необходимо оценить тот риск, который возникает для природных экосистем при культивировании растений, используемых в качестве сырья для биотоплива.