Спиртовые топливные элементы прямого действия, использующие твердые кислотные электролиты. Что такое топливные элементы Химия и жизнь 1966 топливный элемент

Давно уже прошли те времена, когда загородный дом можно было обогреть лишь одним способом - сжигая в печке дрова или уголь. Современные отопительные приборы используют различные виды топлива и при этом автоматически поддерживают комфортную температуру в наших жилищах. Природный газ, дизель или мазут, электричество, гелио- и - вот неполный список альтернативных вариантов. Казалось бы - живи и радуйся, да вот только постоянный рост цен на топливо и оборудование вынуждает продолжать поиски дешёвых способов отопления. А вместе с тем неиссякаемый источник энергии - водород, буквально лежит у нас под ногами. И сегодня мы поговорим о том, как использовать в качестве горючего обычную воду, собрав генератор водорода своими руками.

Устройство и принцип работы генератора водорода

Заводской генератор водорода представляет собой внушительный агрегат

Использовать водород в качестве топлива для обогрева загородного дома выгодно не только по причине высокой теплотворной способности, но и потому, что в процессе его сжигания не выделяется вредных веществ. Как все помнят из школьного курса химии, при окислении двух атомов водорода (химическая формула H 2 – Hidrogenium) одним атомом кислорода, образуется молекула воды. При этом выделяется в три раза больше тепла, чем при сгорании природного газа. Можно сказать, что равных водороду среди других источников энергии нет, поскольку его запасы на Земле неисчерпаемы - мировой океан на 2/3 состоит из химического элемента H 2 , да и во всей Вселенной этот газ наряду с гелием является главным «строительным материалом». Вот только одна проблема - для получения чистого H 2 надо расщепить воду на составляющие части, а сделать это непросто. Учёные долгие годы искали способ извлечения водорода и остановились на электролизе.

Схема работы лабораторного электролизёра

Этот способ получения летучего газа заключается в том, что в воду на небольшом расстоянии друг от друга помещаются две металлические пластины, подключённые к источнику высокого напряжения. При подаче питания высокий электрический потенциал буквально разрывает молекулу воды на составляющие, высвобождая два атома водорода (HH) и один - кислорода (O). Выделяющийся газ назвали в честь физика Ю. Брауна. Его формула - HHO, а теплотворная способность - 121 МДж/кг. Газ Брауна горит открытым пламенем и не образует никаких вредных веществ. Главное достоинство этого вещества в том, что для его использования подойдёт обычный котёл, работающий на пропане или метане. Заметим только, что водород в соединении с кислородом образует гремучую смесь, поэтому потребуются дополнительные меры предосторожности.

Схема установки для получения газа Брауна

Генератор, предназначенный для получения газа Брауна в больших количествах, содержит несколько ячеек, каждая из которых вмещает в себя множество пар пластин-электродов. Они установлены в герметичной ёмкости, которая оборудована выходным патрубком для газа, клеммами для подключения питания и горловиной для заливки воды. Кроме того, установка оборудуется защитным клапаном и водяным затвором. Благодаря им устраняется возможность распространения обратного пламени. Водород горит только на выходе из горелки, а не воспламеняется во все стороны. Многократное увеличение полезной площади установки позволяет извлекать горючее вещество в количествах, достаточных для различных целей, включая обогрев жилых помещений. Вот только делать это, используя традиционный электролизёр, будет нерентабельно. Проще говоря, если потраченное на добычу водорода электричество напрямую использовать для отопления дома, то это будет намного выгоднее, чем топить котёл водородом.

Водородная топливная ячейка Стенли Мейера

Выход из сложившейся ситуации нашёл американский учёный Стенли Мейер. Его установка использовала не мощный электрический потенциал, а токи определённой частоты. Изобретение великого физика состояло в том, что молекула воды раскачивалась в такт изменяющимся электрическим импульсам и входила в резонанс, который достигал силы, достаточной для её расщепления на составляющие атомы. Для такого воздействия требовались в десятки раз меньшие токи, чем при работе привычной электролизной машины.

Видео: Топливная ячейка Стенли Мейера

За своё изобретение, которое могло бы освободить человечество от кабалы нефтяных магнатов, Стенли Мейер был убит, а труды его многолетних изысканий пропали неизвестно куда. Тем не менее сохранились отдельные записи учёного, на основании которых изобретатели многих стран мира пытаются строить подобные установки. И надо сказать, небезуспешно.

Преимущества газа Брауна как источника энергии

  • Вода, из которой получают HHO, является одним из наиболее распространённых веществ на нашей планете.
  • При сгорании этого вида топлива образуется водяной пар, который можно обратно конденсировать в жидкость и повторно использовать в качестве сырья.
  • В процессе сжигания гремучего газа не образуется никаких побочных продуктов, кроме воды. Можно сказать, что нет более экологичного вида топлива, чем газ Брауна.
  • При эксплуатации водородной отопительной установки выделяется водяной пар в количестве, достаточном для поддержания влажности в помещении на комфортном уровне.

Вам также может быть интересен материал о том, как соорудить самостоятельно газовый генератор:

Область применения

Сегодня электролизёр - такое же привычное устройство, как и генератор ацетилена или плазменный резак. Изначально водородные генераторы использовались сварщиками, поскольку носить за собой установку весом всего несколько килограмм было намного проще, чем перемещать огромные кислородные и ацетиленовые баллоны. При этом высокая энергоёмкость агрегатов решающего значения не имела - всё определяло удобство и практичность. В последние годы применение газа Брауна вышло за рамки привычных понятий о водороде, как топливе для газосварочных аппаратов. В перспективе возможности технологии очень широки, поскольку использование HHO имеет массу достоинств.

  • Сокращение расхода горючего на автотранспорте. Существующие автомобильные генераторы водорода позволяют использовать HHO как добавку к традиционному бензину, дизелю или газу. За счёт более полного сгорания топливной смеси можно добиться 20 – 25 % снижения потребления углеводородов.
  • Экономия топлива на тепловых электростанциях, использующих газ, уголь или мазут.
  • Снижение токсичности и повышение эффективности старых котельных.
  • Многократное снижение стоимости отопления жилых домов за счёт полной или частичной замены традиционных видов топлива газом Брауна.
  • Использование портативных установок получения HHO для бытовых нужд - приготовления пищи, получения тёплой воды и т. д.
  • Разработка принципиально новых, мощных и экологичных силовых установок.

Генератор водорода, построенный с использованием «Технологии водяных топливных ячеек» С. Мейера (а именно так назывался его трактат) можно купить - их изготовлением занимается множество компаний в США, Китае, Болгарии и других странах. Мы же предлагаем изготовить водородный генератор самостоятельно.

Видео: Как правильно обустроить водородное отопление

Что необходимо для изготовления топливной ячейки дома

Приступая к изготовлению водородной топливной ячейки, надо обязательно изучить теорию процесса образования гремучего газа. Это даст понимание происходящего в генераторе, поможет при настройке и эксплуатации оборудования. Кроме того, придётся запастись необходимыми материалами, большинство из которых будет нетрудно найти в торговой сети. Что же касается чертежей и инструкций, то мы постараемся раскрыть эти вопросы в полном объёме.

Проектирование водородного генератора: схемы и чертежи

Самодельная установка для получения газа Брауна состоит из реактора с установленными электродами, ШИМ-генератора для их питания, водяного затвора и соединительных проводов и шлангов. В настоящее время существует несколько схем электролизёров, использующих в качестве электродов пластины или трубки. Кроме того, в Сети можно найти и установку так называемого сухого электролиза. В отличие от традиционной конструкции, в таком аппарате не пластины устанавливаются в ёмкость с водой, а жидкость подаётся в зазор между плоскими электродами. Отказ от традиционной схемы позволяет значительно уменьшить габариты топливной ячейки.

Электрическая схема ШИМ-регулятора Схема единичной пары электродов, используемых в топливной ячейке Мейера Схема ячейки Мейера Электрическая схема ШИМ-регулятора Чертёж топливной ячейки
Чертёж топливной ячейки Электрическая схема ШИМ-регулятора Электрическая схема ШИМ-регулятора

В работе можно использовать чертежи и схемы рабочих электролизёров, которые можно адаптировать под собственные условия.

Выбор материалов для строительства генератора водорода

Для изготовления топливной ячейки практически никаких специфичных материалов не требуется. Единственное, с чем могут возникнуть сложности, так это электроды. Итак, что надо подготовить перед началом работы.

  1. Если выбранная вами конструкция представляет собой генератор «мокрого» типа, то понадобится герметичная ёмкость для воды, которая одновременно будет служить и корпусом реактора. Можно взять любой подходящий контейнер, главное требование - достаточная прочность и газонепроницаемость. Разумеется, при использовании в качестве электродов металлических пластин лучше использовать прямоугольную конструкцию, к примеру, тщательно загерметизированный корпус от автомобильного аккумулятора старого образца (чёрного цвета). Если же для получения HHO будут применяться трубки, то подойдёт и вместительная ёмкость от бытового фильтра для очистки воды. Самым же лучшим вариантом будет изготовление корпуса генератора из нержавеющей стали, например, марки 304 SSL.

    Электродная сборка для водородного генератора «мокрого» типа

    При выборе «сухой» топливной ячейки понадобится лист оргстекла или другого прозрачного пластика толщиной до 10 мм и уплотнительные кольца из технического силикона.

  2. Трубки или пластины из «нержавейки». Конечно, можно взять и обычный «чёрный» металл, однако в процессе работы электролизёра простое углеродистое железо быстро корродирует и электроды придётся часто менять. Применение же высокоуглеродистого металла, легированного хромом, даст генератору возможность работать длительное время. Умельцы, занимающиеся вопросом изготовления топливных ячеек, длительное время занимались подбором материала для электродов и остановились на нержавеющей стали марки 316 L. К слову, если в конструкции будут использоваться трубки из этого сплава, то их диаметр надо подобрать таким образом, чтобы при установке одной детали в другую между ними был зазор не более 1 мм. Для перфекционистов приводим точные размеры:
    - диаметр внешней трубки - 25.317 мм;
    - диаметр внутренней трубки зависит от толщины внешней. В любом случае он должен обеспечивать зазор между этими элементами равный 0.67 мм.

    От того, насколько точно будут подобраны параметры деталей водородного генератора, зависит его производительность

  3. ШИМ-генератор. Правильно собранная электрическая схема позволит в нужных пределах регулировать частоту тока, а это напрямую связано с возникновением резонансных явлений. Другими словами, чтобы началось выделение водорода, надо будет подобрать параметры питающего напряжения, поэтому сборке ШИМ-генератора уделяют особое внимание. Если вы хорошо знакомы с паяльником и сможете отличить транзистор от диода, то электрическую часть можно изготовить самостоятельно. В противном случае можно обратиться к знакомому электронщику или заказать изготовление импульсного источника питания в мастерской по ремонту электронных устройств.

    Импульсный блок питания, предназначенный для подключения к топливной ячейке, можно купить в Сети. Их изготовлением занимаются небольшие частные компании в нашей стране и за рубежом.

  4. Электрические провода для подключения. Достаточно будет проводников сечением 2 кв. мм.
  5. Бабблер. Этим причудливым названием умельцы обозвали самый обычный водяной затвор. Для него можно использовать любую герметичную ёмкость. В идеале она должна быть оборудована плотно закрывающейся крышкой, которая при возгорании газа внутри будет мгновенно сорвана. Кроме того, рекомендуется между электролизёром и бабблером устанавливать отсекатель, который будет препятствовать возвращению HHO в ячейку.

    Конструкция бабблера

  6. Шланги и фитинги. Для подключения генератора HHO понадобятся прозрачная пластиковая трубка, подводящий и отводящий фитинг и хомуты.
  7. Гайки, болты и шпильки. Они понадобятся для крепления частей электролизёра между собой.
  8. Катализатор реакции. Для того чтобы процесс образования HHO шёл интенсивнее, в реактор добавляют гидроксид калия KOH. Это вещество можно без проблем купить в Сети. На первое время будет достаточно не более 1 кг порошка.
  9. Автомобильный силикон или другой герметик.

Заметим, что полированные трубки использовать не рекомендуется. Наоборот, специалисты рекомендуют обработать детали наждачной бумагой для получения матовой поверхности. В дальнейшем это будет способствовать увеличению производительности установки.

Инструменты, которые потребуются в процессе работы

Прежде чем приступить к постройке топливной ячейки, подготовьте такие инструменты:

  • ножовку по металлу;
  • дрель с набором свёрл;
  • набор гаечных ключей;
  • плоская и шлицевая отвёртки;
  • угловая шлифмашина («болгарка») с установленным кругом для резки металла;
  • мультиметр и расходомер;
  • линейка;
  • маркер.

Кроме того, если вы будете самостоятельно заниматься постройкой ШИМ-генератора, то для его наладки потребуется осциллограф и частотомер. В рамках данной статьи мы этот вопрос поднимать не будем, поскольку изготовление и настройка импульсного блока питания лучше всего рассматривается специалистами на профильных форумах.

Обратите внимание на статью, в которой приведены другие источники энергии, которую можно использовать для обустройства отопления дома:

Инструкция: как сделать водородный генератор своими руками

Для изготовления топливной ячейки возьмём наиболее совершенную «сухую» схему электролизёра с использованием электродов в виде пластин из нержавеющей стали. Представленная ниже инструкция демонстрирует процесс создания водородного генератора от «А» до «Я», поэтому лучше придерживаться очерёдности действий.

Схема топливной ячейки «сухого» типа

  1. Изготовление корпуса топливной ячейки. В качестве боковых стенок каркаса выступают пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Надо понимать, что размер аппарата напрямую влияет на его производительность, однако, и затраты на получение HHO будут выше. Для изготовления топливной ячейки оптимальными будут габариты устройства от 150х150 мм до 250х250 мм.
  2. В каждой из пластин просверливают отверстие под входной (выходной) штуцер для воды. Кроме того, потребуется сверление в боковой стенке для выхода газа и четыре отверстия по углам для соединения элементов реактора между собой.

    Изготовление боковых стенок

  3. Воспользовавшись угловой шлифовальной машиной, из листа нержавеющей стали марки 316L вырезают пластины электродов. Их размеры должны быть меньше габаритов боковых стенок на 10 – 20 мм. Кроме того, изготавливая каждую деталь, необходимо оставлять небольшую контактную площадку в одном из углов. Это понадобится для соединения отрицательных и положительных электродов в группы перед их подключением к питающему напряжению.
  4. Для того чтобы получать достаточное количество HHO, нержавейку надо обработать мелкой наждачной бумагой с обеих сторон.
  5. В каждой из пластин сверлят два отверстия: сверлом диаметром 6 - 7 мм - для подачи воды в пространство между электродами и толщиной 8 - 10 мм - для отвода газа Брауна. Точки сверлений рассчитывают с учётом мест установки соответствующих подводящих и выходного патрубков.

    Вот такой комплект деталей необходимо подготовить перед сборкой топливной ячейки

  6. Начинают сборку генератора. Для этого в оргалитовые стенки устанавливают штуцеры подачи воды и отбора газа. Места их присоединений тщательно герметизируют при помощи автомобильного или сантехнического герметика.
  7. После этого в одну из прозрачных корпусных деталей устанавливают шпильки, после чего начинают укладку электродов.

    Укладку электродов начинают с уплотняющего кольца

    Обратите внимание: плоскость пластинчатых электродов должна быть ровной, иначе элементы с разноимёнными зарядами будут касаться, вызывая короткое замыкание!

  8. Пластины нержавеющей стали отделяют от боковых поверхностей реактора при помощи уплотнительных колец, которые можно сделать из силикона, паронита или другого материала. Важно только, чтобы его толщина не превышала 1 мм. Такие же детали используют в качестве дистанционных прокладок между пластинами. В процессе укладки следят, чтобы контактные площадки отрицательных и положительных электродов были сгруппированы в разных сторонах генератора.

    При сборке пластин важно правильно ориентировать выходные отверстия

  9. После укладки последней пластины устанавливают уплотнительное кольцо, после чего генератор закрывают второй оргалитовой стенкой, а саму конструкцию скрепляют при помощи шайб и гаек. Выполняя эту работу, обязательно следят за равномерностью затяжки и отсутствием перекосов между пластинами.

    При финальной затяжке обязательно контролируют параллельность боковых стенок. Это позволит избежать перекосов

  10. При помощи полиэтиленовых шлангов генератор подключают к ёмкости с водой и бабблеру.
  11. Контактные площадки электродов соединяют между собой любым способом, после чего к ним подключают провода питания.

    Собрав несколько топливных ячеек и включив их параллельно, можно получить достаточное количество газа Брауна

  12. На топливную ячейку подают напряжение от ШИМ-генератора, после чего производят настройку и регулировку аппарата по максимальному выходу газа HHO.

Для получения газа Брауна в количестве, достаточном для отопления или приготовления пищи, устанавливают несколько генераторов водорода, работающих параллельно.

Видео: Сборка устройства

Видео: Работа конструкции «сухого» типа

Отдельные моменты использования

Прежде всего, хотелось бы отметить, что традиционный метод сжигания природного газа или пропана в нашем случае не подойдёт, поскольку температура горения HHO превышает аналогичные показатели углеводородов в три с лишним раза. Как вы сами понимаете, такую температуру конструкционная сталь долго не выдержит. Сам Стенли Мейер рекомендовал использовать горелку необычной конструкции, схему которой мы приводим ниже.

Схема водородной горелки конструкции С. Мейера

Вся хитрость этого устройства заключается в том, что HHO (на схеме обозначено цифрой 72) проходит в камеру сжигания через вентиль 35. Горящая водородная смесь поднимается по каналу 63 и одновременно осуществляет процесс эжекции, увлекая за собой наружный воздух через регулируемые отверстия 13 и 70. Под колпаком 40 задерживается некоторое количество продуктов горения (водяного пара), которое по каналу 45 попадает в колонку горения и смешивается с горящим газом. Это позволяет снизить температуру горения в несколько раз.

Второй момент, на который хотелось бы обратить ваше внимание - жидкость, которую следует заливать в установку. Лучше всего использовать подготовленную воду, в которой не содержатся соли тяжёлых металлов. Идеальным вариантом является дистиллят, который можно приобрести в любом автомагазине или аптеке. Для успешной работы электролизёра в воду добавляют гидроксид калия KOH, из расчёта примерно одна столовая ложка порошка на ведро воды.

В процессе работы установки важно не перегревать генератор. При повышении температуры до 65 градусов Цельсия и более электроды аппарата будут загрязняться побочными продуктами реакции, из-за чего производительность электролизёра уменьшится. Если же это всё-таки произошло, то водородную ячейку придётся разобрать и удалить налёт при помощи наждачной бумаги.

И третье, на чём мы делаем особое ударение - безопасность. Помните о том, что смесь водорода и кислорода не случайно назвали гремучей. HHO представляет собой опасное химическое соединение, которое при небрежном обращении может привести к взрыву. Соблюдайте правила безопасности и будьте особенно аккуратны, экспериментируя с водородом. Только в этом случае «кирпичик», из которого состоит наша Вселенная, принесёт тепло и комфорт вашему дому.

Надеемся, статья стала для вас источником вдохновения, и вы, засучив рукава, приступите к изготовлению водородной топливной ячейки. Разумеется, все наши выкладки не являются истиной в последней инстанции, однако, их вполне можно использовать для создания действующей модели водородного генератора. Если же вы хотите полностью перейти на этот вид отопления, то вопрос придётся изучить более детально. Возможно, именно ваша установка станет краеугольным камнем, благодаря которому закончится передел энергетических рынков, а дешёвое и экологичное тепло войдёт в каждый дом.


Владельцы патента RU 2379795:

Изобретение относится к спиртовым топливным элементам прямого действия, использующим твердые кислотные электролиты и катализаторы внутреннего риформинга. Техническим результатом изобретения является повышенные удельная мощность и напряжение элемента. Согласно изобретению топливный элемент включает анод, катод, твердый кислотный электролит, газодиффузионный слой и катализатор внутреннего риформинга. Катализатор внутреннего риформинга может составлять любой подходящий риформер и он располагается по соседству с анодом. В данной конфигурации тепло, генерируемое в экзотермических реакциях на катализаторе в топливном элементе, и омическое нагревание электролита топливного элемента являются движущей силой для эндотермической реакции риформинга топлива, преобразующей спиртовое топливо в водород. Возможно использование любого спиртового топлива, например, метанола или этанола. 5 н. и 20 з.п. ф-лы, 4 ил.

Область техники

Изобретение относится к спиртовым топливным элементам прямого действия, использующим твердые кислотные электролиты.

Уровень техники

Спирты недавно были подвергнуты интенсивным исследованиям в качестве потенциальных топлив. В особенности желательными в качестве топлив являются спирты, такие как метанол и этанол, поскольку они характеризуются удельными энергиями, в пять-семь раз превышающими соответствующие характеристики для стандартного сжатого водорода. Например, один литр метанола энергетически эквивалентен 5,2 литра водорода, сжатого до 320 атм. Кроме того, один литр этанола энергетически эквивалентен 7,2 литра водорода, сжатого до 350 атм. Желательными такие спирты являются также и потому, что они просты в обращении, хранении и транспортировке.

Метанол и этанол являлись предметом многих исследований с точки зрения спиртового топлива. Этанол можно получать в результате ферментации растений, содержащих сахар и крахмал. Метанол можно получать в результате газификации древесины или отходов древесины/зерновых растений (соломы). Однако более эффективным является синтез метанола. Данные спирты, помимо прочего, являются возобновляемыми ресурсами и поэтому они предположительно играют важную роль как в уменьшении выделения газов, вызывающих парниковый эффект, так и в уменьшении зависимости от ископаемых топлив.

Топливные элементы были предложены в качестве устройств, превращающих химическую энергию таких спиртов в электрическую энергию. В этом отношении интенсивным исследованиям были подвергнуты спиртовые топливные элементы прямого действия, имеющие мембраны из полимерного электролита. Говоря конкретно, исследованиям были подвергнуты метанольные топливные элементы прямого действия и этанольные топливные элементы прямого действия. Однако исследования этанольных топливных элементов прямого действия проводились ограниченно вследствие относительной трудности окисления этанола в сопоставлении с окислением метанола.

Несмотря на данные усилия в проведении обширных исследований эксплуатационные характеристики спиртовых топливных элементов прямого действия остаются неудовлетворительными главным образом вследствие кинетических ограничений, налагаемых электродными катализаторами. Например, типичные метанольные топливные элементы прямого действия характеризуются удельной мощностью, равной приблизительно 50 мВт/см 2 . Были получены и более высокие уровни удельной мощности, например 335 мВт/см 2 , но только в чрезвычайно суровых условиях (Nafion®, 130°C, кислород 5 атм и метанол 1 М для расхода 2 куб. см/мин при давлении 1,8 атм). Подобным же образом этанольный топливный элемент прямого действия характеризуется удельной мощностью 110 мВт/см 2 при подобных чрезвычайно суровых условиях (Nafion® - диоксид кремния, 140°С, анод 4 атм, кислород 5,5 атм). В соответствии с этим существует потребность в спиртовых топливных элементах прямого действия, характеризующихся высокими удельными мощностями в отсутствие таких экстремальных условий.

Краткое изложение изобретения

Настоящее изобретение относится к спиртовым топливным элементам, содержащим твердые кислотные электролиты и использующим катализатор внутреннего риформинга. Топливный элемент в общем случае включает анод, катод, твердый кислотный электролит и внутренний риформер. Риформер обеспечивает прохождение риформинга спиртового топлива с получением водорода. Движущей силой реакции риформинга является тепло, генерируемое в ходе экзотермических реакций в топливном элементе.

Использование твердых кислотных электролитов в топливном элементе делает возможным размещение риформера непосредственно по соседству с анодом. Ранее это не считалось возможным вследствие повышенных температур, требуемых для эффективного функционирования известных материалов риформинга, и чувствительности к воздействию тепла у типичных мембран из полимерного электролита. Однако в сопоставлении с обычными мембранами из полимерных электролитов твердые кислотные электролиты могут противостоять воздействию намного более высоких температур, что делает возможным размещение риформера по соседству с анодом и поэтому поблизости от электролита. В данной конфигурации отходящее тепло, генерируемое электролитом, поглощается риформером и служит движущей силой эндотермической реакции риформинга.

Краткое описание чертежей

Данные и другие признаки и преимущества настоящего изобретения будет лучше поняты после ознакомления со следующим далее подробным описанием, рассматриваемым в сочетании с прилагаемыми чертежами, где:

Фигура 1 представляет собой схематическое изображение топливного элемента, соответствующего одному варианту реализации настоящего изобретения;

Фигура 2 представляет собой графическое сопоставление кривых зависимостей между удельной мощностью и напряжением элемента для топливных элементов, полученных в соответствии с примерами 1 и 2 и сравнительным примером 1;

Фигура 3 представляет собой графическое сопоставление кривых зависимостей между удельной мощностью и напряжением элемента для топливных элементов, полученных в соответствии с примерами 3, 4 и 5 и сравнительным примером 2; и

Фигура 4 представляет собой графическое сопоставление кривых зависимостей между удельной мощностью и напряжением элемента для топливных элементов, полученных в соответствии со сравнительными примерами 2 и 3.

Подробное описание изобретения

Настоящее изобретение относится к спиртовым топливным элементам прямого действия, содержащим твердые кислотные электролиты и использующим катализатор внутреннего риформинга, находящийся в физическом контакте с мембранно-электродным агрегатом (МЭА), предназначенным для проведения риформинга спиртового топлива с получением водорода. Как отмечалось выше, эксплуатационные характеристики топливных элементов, которые превращают химическую энергию в спиртах непосредственно в электрическую мощность, остаются неудовлетворительными вследствие кинетических ограничений, обусловленных электродными катализаторами топливных элементов. Однако хорошо известно, что данные кинетические ограничения значительно уменьшаются в случае использования водородного топлива. В соответствии с этим в настоящем изобретении используют катализатор риформинга или риформер, предназначенные для проведения риформинга спиртового топлива с получением водорода, тем самым обеспечивая уменьшение или устранение кинетических ограничений, связанных со спиртовым топливом. Спиртовые топлива подвергают паровому риформингу в соответствии со следующими далее примерами реакций:

Метанол в водород: СН 3 ОН+Н 2 O→3Н 2 +СО 2 ;

Этанол в водород: C 2 H 5 OH+3Н 2 О→6H 2 +2CO 2 .

Однако реакция риформинга является сильно эндотермичной. Поэтому для получения движущей силы реакции риформинга риформер необходимо нагревать. Требуемое количество тепла обычно составляет приблизительно 59 кДж на один моль метанола (эквивалентно сжиганию приблизительно 0,25 моль водорода) и приблизительно 190 кДж на один моль этанола (эквивалентно сжиганию приблизительно 0,78 моль водорода).

В результате прохождения электрического тока во время эксплуатации топливных элементов происходит генерация отходящего тепла, эффективное удаление которого оказывается проблематичным. Однако генерация данного отходящего тепла делает размещение риформера непосредственно рядом с топливным элементом естественным вариантом при выборе. Такая конфигурация делает возможными подачу водорода из риформера в топливный элемент и охлаждение топливного элемента и позволяет топливному элементу нагревать риформер и формировать движущую силу для реакций в нем. Такая конфигурация используется в топливных элементах на основе расплавленных карбонатов и для реакций риформинга метана, проходящих при температуре, приблизительно равной 650°С. Однако реакции риформинга спирта в общем случае протекают при температурах в диапазоне от приблизительно 200°С до приблизительно 350°С, и до сих пор еще не было разработано никакого подходящего топливного элемента с использованием риформинга спирта.

Настоящее изобретение относится к такому топливному элементу с использованием риформинга спирта. Как проиллюстрировано на ФИГУРЕ 1, топливный элемент 10, соответствующий настоящему изобретению, в общем случае включает первый токосъемник/газодиффузионный слой 12, анод 12а, второй токосъемник/газодиффузионный слой 14, катод 14а, электролит 16 и катализатор внутреннего риформинга 18. Катализатор внутреннего риформинга 18 располагают по соседству с анодом 12а. Говоря более конкретно, катализатор риформинга 18 располагают между первым газодиффузионным слоем 12 и анодом 12а. Возможно использование любого известного подходящего катализатора риформинга 18. Неограничивающие примеры подходящих катализаторов риформинга включают смеси оксидов Cu-Zn-Al, смеси оксидов Cu-Co-Zn-Al и смеси оксидов Cu-Zn-Al-Zr.

Возможно использование любого спиртового топлива, такого как метанол, этанол и пропанол. В дополнение к этому в качестве топлива возможно использование диметилового эфира.

Исторически данная конфигурация не считалась возможной для спиртовых топливных элементов вследствие эндотермической природы реакции риформинга и чувствительности электролита к воздействию тепла. В типичных спиртовых топливных элементах используют мембраны из полимерного электролита, которые не могут выдерживать воздействие тепла, необходимого для создания движущей силы для катализатора риформинга. Однако электролиты, используемые в топливных элементах настоящего изобретения, содержат твердые кислотные электролиты, такие как те, что описываются в патенте США №6468684, озаглавленном PROTON CONDUCTING MEMBRANE USING A SOLID ACID, полное содержание которого включается в настоящий документ для справки, и в одновременно находящейся на рассмотрении патентной заявке США с регистрационным номером 10/139043, озаглавленной PROTON CONDUCTING MEMBRANE USING A SOLID ACID, полное содержание которой также включается в настоящий документ для справки. Одним неограничивающим примером твердой кислоты, подходящей для использования в качестве электролита в настоящем изобретении, является CsH 2 PО 4 . Твердые кислотные электролиты, используемые в случае топливных элементов данного изобретения, могут выдерживать воздействие намного более высоких температур, что делает возможным размещение катализатора риформинга непосредственно по соседству с анодом. Кроме того, эндотермическая реакция риформинга потребляет тепло, генерируемое в экзотермических реакциях в топливном элементе, формируя термически сбалансированную систему.

Данные твердые кислоты используются в своих суперпротонных фазах и выступают в роли протонопроводящих мембран в температурном диапазоне от приблизительно 100°С до приблизительно 350°С. Верхний край данного температурного диапазона идеален для риформинга метанола. Для обеспечения генерации тепла в степени, достаточной для формирования движущей силы для реакции риформинга, и для обеспечения протонной проводимости твердого кислотного электролита топливный элемент настоящего изобретения предпочтительно эксплуатируют при температурах в диапазоне от приблизительно 100°С до приблизительно 500°С. Однако более предпочтительно топливный элемент эксплуатировать при температурах в диапазоне от приблизительно 200°С до приблизительно 350°С. В дополнение к значительному улучшению эксплуатационных характеристик спиртовых топливных элементов относительно высокие рабочие температуры спиртовых топливных элементов изобретения могут сделать возможным замещение дорогостоящих металлических катализаторов, таких как Pt/Ru и Pt на аноде и катоде соответственно менее дорогими материалами катализаторов.

Следующие далее примеры и сравнительные примеры иллюстрируют превосходные эксплуатационные характеристики спиртовых топливных элементов изобретения. Однако данные примеры представлены только для целей иллюстрации и не должны восприниматься в качестве ограничения изобретения данными примерами.

Пример 1. Метанольный топливный элемент

В качестве анодного электрокатализатора использовали 13 мг/см 2 Pt/Ru. В качестве катализатора внутреннего риформинга использовали Си (30% мacc.) - Zn (20% масс.) - Аl. В качестве катодного электрокатализатора использовали 15 мг/см 2 Pt. В качестве электролита использовали мембрану из CsH 2 PO 4 с толщиной 160 мкм. Превращенные в пар смеси метанола и воды подавали в анодное пространство с расходом 100 мкл/мин. На катод с расходом 50 см 3 /мин (стандартные температура и давление) подавали 30%-ный увлажненный кислород. Соотношение метанол: вода составляло 25:75. Температуру элемента задавали равной 260°С.

Пример 2. Этанольный топливный элемент

В качестве анодного электрокатализатора использовали 13 мг/см 2 Pt/Ru. В качестве катализатора внутреннего риформинга использовали Си (30% мacc.) - Zn (20% масс.) - Аl. В качестве катодного электрокатализатора использовали 15 мг/см 2 Pt. В качестве электролита использовали мембрану из CsH 2 PO 4 с толщиной 160 мкм. Превращенные в пар смеси этанола и воды подавали в анодное пространство с расходом 100 мкл/мин. На катод с расходом 50 см 3 /мин (стандартные температура и давление) подавали 30%-ный увлажненный кислород. Соотношение этанол: вода составляло 15:85. Температуру элемента задавали равной 260°С.

Сравнительный пример 1 - Топливный элемент с использованием чистого Н 2

В качестве анодного электрокатализатора использовали 13 мг/см 2 Pt/Ru. В качестве катодного электрокатализатора использовали 15 мг/см 2 Pt. В качестве электролита использовали мембрану из CsH 2 PO 4 с толщиной 160 мкм. В анодное пространство с расходом 100 мкл/мин подавали 3%-ный увлажненный водород. На катод с расходом 50 см 3 /мин (стандартные температура и давление) подавали 30%-ный увлажненный кислород. Температуру элемента задавали равной 260°С.

На фигуре 2 продемонстрированы кривые зависимостей между удельной мощностью и напряжением элемента для примеров 1 и 2 и сравнительного примера 1. Как показано, для метанольного топливного элемента (пример 1) достигается пиковая удельная мощность 69 мВт/см 2 , для этанольного (пример 2) топливного элемента достигается пиковая удельная мощность 53 мВт/см 2 , а для водородного топливного элемента (сравнительный пример 1) достигается пиковая удельная мощность 80

мВт/см 2 . Данные результаты показывают, что топливные элементы, полученные в соответствии с примером 1 и сравнительным примером 1, очень похожи, свидетельствуя о том, что метанольный топливный элемент, имеющий риформер, демонстрирует эксплуатационные характеристики, почти такие же хорошие, как и у водородного топливного элемента, что является существенным улучшением. Однако, как продемонстрировано в приведенных далее примерах и сравнительных примерах, в результате уменьшения толщины электролита достигается дополнительное увеличение удельной мощности.

Топливный элемент изготавливали в результате суспензионного осаждения CsH 2 PO 4 на пористый носитель из нержавеющей стали, который служил в качестве как газодиффузионного слоя, так и токосъемника. Слой катодного электрокатализатора сначала осаждали на газодиффузионный слой, а после этого спрессовывали перед осаждением слоя электролита. После этого осаждали слой анодного электрокатализатора с последующим размещением второго газодиффузионного электрода в качестве конечного слоя структуры.

В качестве анодного электрода использовали смесь CsH 2 PO 4 , Pt (50 атомных мас.%) Ru, Pt (40% мacc.) - Ru (20% масс.), нанесенных на С (40% масс.), и нафталина. Соотношение компонентов в смеси CsH 2 PO 4:Pt-Ru:Pt-Ru-C: нафталин составляло 3:3:1:0,5 (масс.). Использовали смесь в общем количестве 50 мг. Загрузки Pt и Ru составляли 5,6 мг/см 2 и 2,9 мг/см 2 соответственно. Площадь анодного электрода была равна 1,74 см 2 .

В качестве катодного электрода использовали смесь CsH 2 PO 4 , Pt, Pt (50% масс.), нанесенной на С (50% масс.), и нафталина. Соотношение компонентов в смеси CsH 2 PO 4:Pt:Pt-C: нафталин составляло 3:3:1:1 (масс.). Использовали смесь в общем количестве 50 мг. Загрузки Pt составляли 7,7 мг/см 2 . Площадь катода была равна 2,3-2,9 см 1 .

В качестве катализатора риформинга использовали СuО (30% масс.) - ZnO (20% масс.) - Аl 2 O 3 , то есть СuО (31% мол.) - ZnO (16% мол.) - Аl 2 O 3 . Катализатор риформинга получали по способу совместного осаждения при использовании раствора нитрата меди, цинка и алюминия (общая концентрация металла составляла 1 моль/л) и водного раствора карбонатов натрия (1,1 моль/л). Осадок промывали деионизованной водой, отфильтровывали и высушивали на воздухе при 120°С в течение 12 часов. Высушенный порошок в количестве 1 г слегка спрессовывали до толщины 3,1 мм и диаметра 15,6 мм, а после этого прокаливали при 350°С в течение 2 часов.

В качестве электролита использовали мембрану из CsH 2 PO 4 с толщиной 47 мкм.

Раствор метанол-вода (43% об. или 37% масс. или 25% мол. или 1,85 М метанола) подавали через стеклянный испаритель (200°С) с расходом 135 мкл/мин. Температуру элемента задавали равной 260°С.

Топливный элемент получали в соответствии с приведенным выше примером 3, за исключением того, что через испаритель (200°С) при расходе 114 мкл/мин подавали не смесь метанол-вода, а смесь этанол-вода (36% об. или 31% масс. или 15% мол., или 0,98 М этанола).

Топливный элемент получали в соответствии с приведенным выше примером 3, за исключением того, что при расходе 100 мкл/мин вместо смеси метанол-вода подавали водку (Absolut Vodka, Швеция) (40% об. или 34% масс., или 17% мол. этанола).

Сравнительный пример 2

Топливный элемент получали в соответствии с приведенным выше примером 3, за исключением того, что вместо смеси метанол-вода использовали высушенный водород в количестве 100 стандартных кубических сантиметров в минуту, увлажненный горячей водой (70°С).

Сравнительный пример 3

Топливный элемент получали в соответствии с приведенным выше примером 3, за исключением того, что никакого катализатора риформинга не использовали, а температуру элемента задавали равной 240°С.

Сравнительный пример 4

Топливный элемент получали в соответствии со сравнительным примером 2, за исключением того, что температуру элемента задавали равной 240°С.

На фигуре 3 продемонстрированы кривые зависимостей между удельной мощностью и напряжением элемента для примеров 3, 4 и 5 и сравнительного примера 2. Как показано, для метанольного топливного элемента (пример 3) достигается пиковая удельная мощность 224 мВт/см 2 , что представляет собой значительное увеличение удельной мощности в сопоставлении с топливным элементом, полученным в соответствии с примером 1 и имеющим намного более толстый электролит. Данный метанольный топливный элемент также демонстрирует резкое улучшение эксплуатационных характеристик в сопоставлении с метанольными топливными элементами, не использующими внутреннего риформера, что лучше продемонстрировано на фигуре 4. Этанольный топливный элемент (пример 4) также демонстрирует увеличенные удельную мощность и напряжение элемента в сопоставлении с этанольным топливным элементом, имеющим более толстую мембрану электролита (пример 2). Однако, как показано, метанольный топливный элемент (пример 3) демонстрирует лучшие эксплуатационные характеристики в сопоставлении с этанольным топливным элементом (пример 4). Для водочного топливного элемента (пример 5) достигаются удельные мощности, сопоставимые с соответствующими характеристиками этанольного топливного элемента. Как продемонстрировано на фигуре 3, метанольный топливный элемент (пример 3) демонстрирует эксплуатационные характеристики, приблизительно такие же хорошие, как и у водородного топливного элемента (сравнительный пример 2).

На фигуре 4 продемонстрированы кривые зависимостей между удельной мощностью и напряжением элемента для сравнительных примеров 3 и 4. Как показано, для метанольного топливного элемента, не имеющего риформера, (сравнительный пример 3) достигаются удельные мощности, значительно меньшие в сопоставлении с соответствующими характеристиками, достигаемыми для водородного топливного элемента (сравнительный пример 4). Кроме того, на фигурах 2, 3 и 4 показано, что в сопоставлении с метанольным топливным элементом, не имеющим риформера (сравнительный пример 3), для метанольных топливных элементов, имеющих риформеры (примеры 1 и 3), достигаются значительно большие удельные мощности.

Предшествующее описание было представлено для ознакомления с предпочтительными в настоящий момент вариантами реализации изобретения. Специалисты в соответствующей области техники и технологии, к которой относится данное изобретение, должны понимать то, что в описанные варианты реализации могут быть внесены изменения и модификации без значительного отклонения от принципов, объема и сущности данного изобретения. В соответствии с этим приведенное выше описание не должно восприниматься как относящееся только к конкретным описанным вариантам реализации, но скорее должно пониматься как согласующееся со следующей далее формулой изобретения, которая содержит наиболее полный и наиболее объективный объем изобретения, и обосновывающее ее.

1. Топливный элемент, включающий: анодный электрокаталитический слой, катодный электрокаталитический слой, слой электролита, содержащий твердую кислоту, газодиффузионный слой и катализатор внутреннего риформинга, расположенный рядом с анодным электрокаталитическим слоем, так, что катализатор внутреннего риформинга расположен между анодным электрокаталитическим слоем и газодиффузионным слоем и находится в физическом контакте с анодным электрокаталитическим слоем.

2. Топливный элемент по п.1, где твердый кислотный электролит содержит CsH 2 PO 4 .

3. Топливный элемент по п.1, где катализатор риформинга выбирают из группы, состоящей из смесей оксидов Cu-Zn-Al, смесей оксидов Cu-Co-Zn-Al и смесей оксидов Cu-Zn-Al-Zr.

4. Способ эксплуатации топливного элемента, включающий:





подачу топлива; и эксплуатацию топливного элемента при температуре в диапазоне от приблизительно 100°С до приблизительно 500°С.

5. Способ по п.4, где топливом является спирт.

6. Способ по п.4, где топливо выбирают из группы, состоящей из метанола, этанола, пропанола и диметилового эфира.

7. Способ по п.4, где топливный элемент эксплуатируют при температуре в диапазоне от приблизительно 200°С до приблизительно 350°С.

8. Способ по п.4, где катализатор риформинга выбирают из группы, состоящей из смесей оксидов Cu-Zn-Al, смесей оксидов Cu-Co-Zn-Al и смесей оксидов Cu-Zn-Al-Zr.

9. Способ по п.4, где электролит содержит твердую кислоту.

10. Способ по п.9, где твердая кислота содержит CsH 2 PO 4 .

11. Способ эксплуатации топливного элемента, включающий:
формирование анодного электрокаталитического слоя;
формирование катодного электрокаталитического слоя;
формирование слоя электролита, содержащего твердую кислоту;
формирование газодиффузионного слоя и
формирование катализатора внутреннего риформинга рядом с анодным электрокаталитическим слоем, так, что катализатор внутреннего риформинга расположен между анодным электрокаталитическим слоем и газодиффузионным слоем и находится в физическом контакте с анодным электрокаталитическим слоем;
подачу топлива; и эксплуатацию топливного элемента при температуре в диапазоне от приблизительно 200°С до приблизительно 350°С.

12. Способ по п.11, где топливом является спирт.

13. Способ по п.11, где топливо выбирают из группы, состоящей из метанола, этанола, пропанола и диметилового эфира.

14. Способ по п.11, где катализатор риформинга выбирают из группы, состоящей из смеси оксидов Cu-Zn-Al, смесей оксидов Cu-Co-Zn-Al и смесей оксидов Cu-Zn-Al-Zr.

15. Способ по п.11, где электролит содержит твердую кислоту.

16. Способ по п.15, где твердая кислота содержит CsH 2 PO 4 .

17. Способ эксплуатации топливного элемента, включающий:
формирование анодного электрокаталитического слоя;
формирование катодного электрокаталитического слоя;
формирование слоя электролита, содержащего твердую кислоту;
формирование газодиффузионного слоя и
формирование катализатора внутреннего риформинга рядом с анодным электрокаталитическим слоем, так, что катализатор внутреннего риформинга расположен между анодным электрокаталитическим слоем и газодиффузионным слоем и находится в физическом контакте с анодным электрокаталитическим слоем;
подачу спиртового топлива; и эксплуатацию топливного элемента при температуре в диапазоне от приблизительно 100°С до приблизительно 500°С.

18. Способ по п.17, где топливо выбирают из группы, состоящей из метанола, этанола, пропанола и диметилового эфира.

19. Способ по п.17, где топливный элемент эксплуатируют при температуре в диапазоне от приблизительно 200°С до приблизительно 350°С.

20. Способ по п.17, где катализатор риформинга выбирают из группы, состоящей из смесей оксидов Cu-Zn-Al, смесей оксидов Cu-Co-Zn-Al и смесей оксидов Cu-Zn-Al-Zr.

21. Способ по п.17, где твердый кислотный электролит содержит CsH 2 PO 4 .

22. Способ эксплуатации топливного элемента, включающий:
формирование анодного электрокаталитического слоя;
формирование катодного электрокаталитического слоя;
формирование слоя электролита, содержащего твердую кислоту;
формирование газодиффузионного слоя и
формирование катализатора внутреннего риформинга рядом с анодным электрокаталитическим слоем, так, что катализатор внутреннего риформинга расположен между анодным электрокаталитическим слоем и газодиффузионным слоем и находится в физическом контакте с анодным электрокаталитическим слоем;
подачу спиртового топлива; и эксплуатацию топливного элемента при температуре в диапазоне от приблизительно 200°С до приблизительно 350°С.

Изобретение относится к спиртовым топливным элементам прямого действия, использующим твердые кислотные электролиты и катализаторы внутреннего риформинга

Топливный элемент - устройство, эффективно вырабатывающее тепло и постоянный ток в результате электрохимической реакции и использующее богатое водородом топливо. По принципу работы он схож с батареей. Конструктивно топливный элемент представлен электролитом. Чем он примечателен? В отличие от тех же батарей, топливные элементы на водороде не накапливают электрическую энергию, не нуждаются в электричестве для повторной зарядки и не разряжаются. Выработка электроэнергии ячейками продолжается до тех пор, пока у них имеется запас воздуха и топлива.

Особенности

Отличием топливных ячеек от прочих генераторов электроэнергии является то, что за время работы они не сжигают топливо. Ввиду такой особенности они не нуждаются в роторах высокого давления, не издают громкого шума и вибраций. Электричество в топливных элементах вырабатывается в результате бесшумной электрохимической реакции. Химическая энергия топлива в таких устройствах преобразуется напрямую в воду, тепло и электричество.

Топливные элементы отличаются высокой эффективностью и не производят большого количества парниковых газов. Продуктом выброса при работе ячеек являются небольшое количество воды в виде пара и углекислого газа, который не выделяется в случае, если в качестве топлива выступает чистый водород.

История появления

В 1950-1960-х годах возникшая потребность NASA в источниках энергии для длительных космических миссий спровоцировала одну из наиболее ответственных задач для существовавших на тот момент топливных элементов. Щелочные элементы используют в качестве топлива кислород и водород, которые в ходе электрохимической реакции преобразуются в побочные продукты, полезные во время космического полета - электричество, воду и тепло.

Топливные элементы впервые были открыты в начале XIX века - в 1838 году. В это же время появились первые сведения об их эффективности.

Работа над топливными элементами, использующими щелочные электролиты, началась в конце 1930-х годов. Ячейки с никелированными электродами под высоким давлением были изобретены только к 1939 году. Во время Второй Мировой войны для британских подлодок разрабатывались топливные элементы, состоящие из щелочных ячеек диаметром около 25 сантиметров.

Интерес к ним возрос в 1950-80-х годах, характеризующихся нехваткой нефтяного топлива. Страны мира начали заниматься вопросами загрязнения воздуха и окружающей среды, стремясь разработать экологически безопасные Технология производства топливных ячеек на сегодняшний день переживает активное развитие.

Принцип работы

Тепло и электроэнергия вырабатываются топливным ячейками в результате электрохимической реакции, проходящей с использованием катода, анода и электролита.

Катод и анод разделены проводящим протоны электролитом. После поступления кислорода на катод и водорода на анод запускается химическая реакция, результатом которой становятся тепло, ток и вода.

Диссоциирует на катализаторе анода, что приводит к потере им электронов. Ионы водорода поступают к катоду через электролит, одновременно электроны проходят по внешней электрической сети и создают постоянный ток, который используется для питания оборудования. Молекула кислорода на катализаторе катода объединяется с электроном и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Типы

Выбор конкретного вида топливной ячейки зависит от области ее применения. Все топливные элементы подразделяются на две основные категории - высокотемпературные и низкотемпературные. Вторые в качестве топлива используют чистый водород. Подобные устройства, как правило, требуют переработки первичного топлива в чистый водород. Процесс осуществляется с использованием специального оборудования.

Высокотемпературные топливные элементы не нуждаются в подобном, поскольку они преобразуют топливо при повышенных температурах, что исключает необходимость создания водородной инфраструктуры.

Принцип работы топливных элементов на водороде основан на превращении химической энергии в электрическую без малоэффективных процессов горения и трансформации тепловой энергии в механическую.

Общие понятия

Водородные топливные элементы представляют собой электрохимические устройства, вырабатывающие электроэнергию в результате высокоэффективного "холодного" горения топлива. Различают несколько типов подобных приборов. Наиболее перспективной технологией считаются водород-воздушные топливные элементы, оснащенные протонообменной мембранной PEMFC.

Протонпроводящая полимерная мембрана предназначена для разделения двух электродов - катода и анода. Каждый из них представлен угольной матрицей с нанесенным на нее катализатором. диссоциирует на катализаторе анода, отдавая электроны. Катионы проводятся к катоду через мембрану, однако электроны передаются во внешнюю цепь, поскольку мембрана не предназначена для передачи электронов.

Молекула кислорода на катализаторе катода объединяется с электроном из электрической цепи и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Топливные элементы на водороде используются для изготовления мембранно-электродных блоков, которые выступают в качестве основных генерирующих элементов энергетической системы.

Преимущества водородных топливных ячеек

Среди них следует выделить:

  • Повышенная удельная теплоемкость.
  • Широкий температурный диапазон эксплуатации.
  • Отсутствие вибрации, шума и теплового пятна.
  • Надежность при холодном запуске.
  • Отсутствие саморазряда, что обеспечивает длительный срок хранения энергии.
  • Неограниченная автономность благодаря возможности корректировки энергоемкости за счет изменения числа топливных баллончиков.
  • Обеспечение практически любой энергоемкости благодаря изменению емкости хранилища водорода.
  • Длительный срок эксплуатации.
  • Бесшумность и экологичность работы.
  • Высокий уровень энергоемкости.
  • Толерантность к сторонним примесям в водороде.

Область применения

Благодаря высокому КПД топливные элементы на водороде применяются в различных областях:

  • Портативные зарядные устройства.
  • Энергоснабжающие системы для БПЛА.
  • Источники бесперебойного питания.
  • Прочие устройства и оборудование.

Перспективы водородной энергетики

Повсеместное использование топливных элементов на перекиси водорода будет возможно только после создания эффективного способа получения водорода. Для введения технологии в активное использование требуются новые идеи, при этом большие надежды возлагаются на концепцию биотопливных элементов и нанотехнологии. Некоторые компании сравнительно недавно выпустили эффективные катализаторы на основе различных металлов, одновременно с чем появились сведения о создании топливных ячеек без мембран, что позволило значительно удешевить производство и упростить конструкцию подобных устройств. Преимущества и характеристики топливных элементов на водороде не перевешивают их основного недостатка - высокой стоимости, особенно в сравнении с углеводородными устройствами. На создание одной водородной энергоустановки требуется минимум 500 тысяч долларов.

Как собрать топливный элемент на водороде?

Топливную ячейку небольшой мощности можно создать самостоятельно в условиях обычной домашней или школьной лаборатории. В качестве материалов используется старый противогаз, куски оргстекла, водный раствор этилового спирта и щелочь.

Корпус топливного элемента на водороде своими руками создается из оргстекла толщиной не менее пяти миллиметров. Перегородки между отсеками могут быть меньшей толщины - порядка 3 миллиметров. Оргстекло склеивается специальным клеем, изготавливаемым из хлороформа либо дихлорэтана и стружки из оргстекла. Все работы производятся только при работающей вытяжке.

В наружной стенке корпуса просверливается отверстие диаметром 5-6 сантиметров, в которое вставляется резиновая пробка и сливная стеклянная трубка. Активированный уголь из противогаза засыпается во второе и четвертое отделение корпуса топливного элемента - он будет использоваться в качестве электрода.

Циркуляция топлива будет осуществляться в первой камере, в то время как пятая заполняется воздухом, из которого будет поставляться кислород. Электролит, засыпающийся между электродами, пропитывается раствором парафина и бензина во избежание его попадания в воздушную камеру. На слой угля кладутся медные пластины с припаянными к ним проводами, через которые будет отводиться ток.

Собранный топливный элемент на водороде заряжается водкой, разбавленной водой в соотношении 1:1. В полученную смесь аккуратно добавляется едкий калий: в 200 граммах воды растворяется 70 граммов калия.

Перед испытанием топливного элемента на водороде в первую камеру заливается топливо, в третью - электролит. Показания вольтметра, подключенного к электродам, должны варьироваться от 0,7 до 0,9 вольт. Для обеспечения непрерывной работы элемента отработанное топливо должно отводиться, а через резиновую трубку - заливаться новое. Сжиманием трубки регулируется скорость подачи топлива. Подобные топливные элементы на водороде, собранные в домашних условиях, обладают небольшой мощностью.

История

Первый элемент был сделан, кажется, из грифеля от русского (это важно) простого карандаша, а корпус был пробкой из-под пива. Все это подогревалось на кухонной плите. Электролитом был порошок "Диггер" для прочистки труб, состоящий из NaOH, если верить этикетке. Поскольку удалось получить какой-то ток, я подумал, что, наверное, такой элемент действительно может работать. Консервные банки начинали течь по швам (припой разъедался щелочью), и я даже не помню, какие результаты получились. Для более серьезного опыта купил жульенницу из нержавейки. Однако, с ней ничего не получилось. Мало того, что напряжение было всего 0,5 вольта, оно было еще и направлено не в ту сторону. Также выяснилось, что угольки от карандашей очень любят рассыпаться на составные части. Видимо, они сделаны не из цельного кристалла графита, а склеены из пыли. Та же судьба постигла стержни от пальчиковых батареек. Также были куплены щетки от каких-то электродвигателей, но у них быстро приходили в негодность места, где подводящий провод входит в щетку. К тому же, одна пара щеток, как оказалось, содержала медь или какой-то другой металл (с щетками это бывает).

Крепко почесав затылок, я решил, что для надежности лучше сделать сосуд из серебра, а уголек - по технологии, описанной Жако, т.е., спеканием. Серебро стоит умеренных денег (цены колеблются, но где-то порядка 10-20 рублей за грамм). Я встречал чай, который стоит гораздо дороже.

Известно, что серебро устойчиво в расплаве NaOH, в то время как железо дает ферраты, например, Na2FeO4. Поскольку вообще железо обладает переменной валентностью, то его ионы могут вызвать в элементе "короткое замыкание", во всяком случае, в теории. Поэтому я решил для начала проверить случай серебра, как более простой. Сначала была куплена мельхиоровая посеребреная ложка, и при испытании со щетками сразу получилось 0,9В открытой цепи с нужной полярностью, а также, довольно большой ток. Впоследствии (не практически, а теоретически) выяснилось, что серебро тоже может растворяться в щелочи в присутствии пероксида натрия Na2O2, который в некоторых количествах образуется при продувании воздуха. Будет ли это происходить в элементе или под защитой углерода серебро находится в безопасности - я не знаю.

Ложка прожила недолго. Серебряный слой вздулся и она прекратила работать. Мельхиор неустойчив в щелочи (как и большинство существующих на свете материалов). После этого я сделал специальный стаканчик из серебряной монеты, на котором и была получена рекордная мощность в 0,176 ватт.

Все это было проделано в обычной городской квартире, на кухне. Я ни разу крупно не обжегся, не устроил пожара и всего один раз пролил расплавленную щелочь на плиту (эмаль немедленно разъело). Инструмент был использован самый простой. Если получится узнать правильный вид железа и правильный состав электролита, то такой элемент сможет сделать на коленке каждый не совсем безрукий мужик.

В 2008 году выявилось несколько "правильных видов железа". Например, пищевая нержавейка, жесть консервных банок, электротехнические стали для магнитопроводов, а также низкоуглеродистые стали - ст1пс, ст2пс. Чем меньше углерода, тем лучше работа. Нержавейка, похоже, работает хуже чистого железа (она, кстати, и дороже намного). "Норвежское листовое" железо, оно же - Шведское - это железо, которое делалось кричным способом в Швеции на древесном угле и содержало не более 0,04% углерода. Сейчас такое низкое содержание углерода можно найти только в электротехнических сталях. Наверное, лучше всего делать стаканчики штамповкой из листовой электротехнической стали

Изготовление серебряного стаканчика

В 2008 году выяснилось, что железный стаканчик тоже работает хорошо, поэтому я убираю всё, что касается серебряного стаканчика. Это было интересно, но теперь уже неактуально.

Можно пытаться использовать графит. Но я не успел. Я выпросил у тетеньки-водителя накладку для рогов троллейбуса, но это было уже в конце моей экспериментальной эпопеи. Еще можно попробовать щетки от двигателей, но они часто бывают с медью, что нарушает чистоту эксперимента. У меня было два варианта щеток, одни оказались с медью. Карандаши не дают никакого результата, потому что у них маленькая площадь поверхности и с них неудобно снимать ток. Стержни от батарей в щелочи разваливаются
(что-то происходит со связующим). Вообще говоря, графит - это наихудшее топливо для элемента, т.к. он наиболее химически стоек. Поэтому изготавливаем электрод "по честному". Берем древесный уголь (я покупал в супермаркете березовый уголь для шашлыков), мелется как можно мельче (я молол сначала в фарфоровой ступке, потом купил кофемолку). В промышленности электроды делают из нескольких фракций угля, смешивая их друг с другом. Ничто не мешает сделать так же. Порошок подвергается обжигу для повышения электропроводности: его нужно на несколько минут нагреть до как можно более высокой температуры (1000 и больше). Естественно, без доступа воздуха.

Я для этого сделал горн из двух вложенных друг в друга консервных банок. Между ними для теплоизоляции навалены кусочки сухой глины. Дно обеих банок пробито, чтобы было куда дуть воздуху. Внутренняя банка насыпается углями (которые выполняют роль топлива), среди них помещается металлическая коробочка - "тигель", я ее тоже сворачивал из жести от консервной банки. В коробочку запихивается завернутый в бумажный кулек угольный порошок. Должен быть зазор между свертком с углем и стенками "тигля". Он засыпается песком, чтобы не было доступа воздуха. Угли поджигаются, затем сквозь дырки в дне производится наддув обычным феном. Все это достаточно пожароопасно - летят искры. Нужны защитные очки, а также нужно смотреть, чтобы рядом не было занавесок, бочек с бензином и других пожароопасных предметов. Лучше бы, по хорошему, делать такие дела где-нибудь на зеленой лужайке в период дождей (в перерыве между дождями). Извините, но мне лень рисовать всю эту конструкцию. Думаю, догадаетесь и без меня.

Далее к обожженому порошку на глаз добавляется некоторое количество сахара (наверное, от трети до половины). Это - связующее. Потом - чуть-чуть воды (когда у меня были грязные руки и лень было открывать кран, я просто плевал в него и добавлял пиво вместо воды, не знаю, насколько это имеет значение; вполне возможно, что органика важна. Все это тщательно перемешивается в ступке. В результате должна получиться пластичная масса. Из этой массы нужно сформовать электрод. Чем лучше ты его спрессуешь, тем лучше. Я брал заглушенный кусок трубки и забивал уголь в трубку меньшей трубкой, с помощью молотка. Чтобы изделие не развалилось при извлечении из трубки, перед набивкой в трубу вставлял несколько ободков из бумаги. Заглушка должна быть сьемной, а еще лучше - если труба будет распилена вдоль и соединена хомутами. Тогда после прессовки можно просто разьединить хомуты и достать заготовку уголька в целости и сохранности. В случае сьемной заглушки нужно будет выдавить готовую заготовку из
трубы (при этом она может развалиться). Уголек у меня имел диаметр 1,2-1,5 см и длину 4-5 см.

Готовая форма сушится. Для этого я включал газовую плиту на очень маленький огонь, ставил на нее пустую консервную банку кверху дном и на дно клал уголек. Сушка должна быть достаточно медленной, чтобы пары воды не разорвали заготовку. После испарения всей воды начнет "кипеть" сахар. Он превратится в карамель и склеит кусочки угля между собой.

После остывания нужно просверлить в угольке продольное (вдоль его оси симметрии) круглое отверстие, в которое будет вставляться отводящий электрод. Диаметр отверстия - не помню, кажется, 4 мм. При этой процедуре уже может все накрыться, потому что конструкция хрупкая. Я сначала сверлил 2 мм сверлом, потом аккуратно (вручную) расширял 3-мм и 4-мм сверлами, или даже надфилем, точно не помню. В принципе, можно эту дырку сделать уже на этапе формовки. Но это -
нюансы.

После того, как все высушено и просверлено, нужно произвести обжиг. Общий смысл - нужно при достаточно плавном наборе температуры подвергнуть уголек сильному и равномерному нагреву без доступа воздуха на некоторое время (около 20 минут). Нагревать нужно постепенно, остужать - тоже. Температура - чем выше, тем лучше. Желательно, больше 1000. У меня было
оранжевое (ближе к белому) каление железа в импровизированном горне. Промышеленные электроды обжигают много суток, с очень плавным подводом-отводом теплоты. Ведь это, по сути - керамика, которая хрупка. Гарантировать, что уголек не треснет, я не могу. Я все делал на глаз. Некоторые угольки трескались сразу при начале эксплуатации.

Итак, уголек готов. Он должен иметь как можно меньшее сопротивление. При измерении сопротивления нужно не прикасаться к угольку иглами тестера, а взять два многожильных провода, прислонить их к сторонам уголька (не к концам стержня, а просто по диаметру) и сильно прижать пальцами (только чтобы не треснул), см. рисунок, на рисунке розовая аморфная масса - это пальцы, сжимающие жилы проводов.

Если сопротивление - 0.3-0.4 ома (это было на грани чувствительности моего тестера), то это - хороший уголек. Если больше 2-3 ом, то плохой (удельная мощность будет маленькая). Если уголек не удался, можно повторить обжиг.

После того, как сделали обжиг, делаем отводящий электрод. Это - полоска серебра или железа - 2008 год длиной, равной двукратной или чуть меньше длине уголька,
шириной - два диаметра отверстия. Толщина - допустим, 0,5 мм. Из нее нужно свернуть цилиндр, внешний диаметр которого равен
диаметру отверстия. Но цилиндр не получится, потому что ширина слишком мала, получится цилиндр с продольной прорезью. Эта прорезь важна, для компенсации теплового расширения. Если сделать полный цилиндр, то серебро при нагреве разорвет уголек.
"Цилиндр" вставляем в уголек. Нужно сделать так, чтобы он плотно входил в дырку. Здесь есть две стороны: чрезмерное усилие разорвет уголек, при слабом усилии не будет достаточного контакта (он очень важен). См. рисунок.

Эта конструкция родилась не сразу, она представляется мне более совершенной, чем те хомуты, которые нарисованы в патенте у Жако. Во-первых, при таком контакте ток идет не вдоль, а по радиусу цилиндрического уголька, что позволяет существенно снизить электрические потери. Во-вторых, металлы имеют больший коэффициент теплового расширения, чем уголь, поэтому контакт угля с металлическим хомутом ослабевает при нагреве. В моем случае контакт упрочняется или сохраняет свою силу. В-третьих, если отводящий электрод сделан не из серебра, то уголь предохраняет его от окисления. Скорее дайте мне патент!

Теперь можно еще раз померять сопротивление, одним из полюсов будет токоотводящий электрод. Кстати, у моего тестера 0.3 ома - это уже предел чувствительности, поэтому лучше пропустить ток известного напряжения и померять его силу.

Подача воздуха

Берем стальной стерженек от шариковой ручки большой емкости. Желательно - пустой. Удаляем из него блок с шариком - остается просто железная трубочка. Тщательно удаляем остатки пасты (у меня это не очень хорошо получилось и паста потом обуглилась, что мешало жить). Сначала это делается водой, а потом лучше все же несколько раз прокалить стерженек в пламени горелки. Произойдет пиролиз чернил, после этого останется уголь, который можно выковырять.

Далее находим какую-то еще трубку, чтобы соединить этот стерженек (он будет раскален) с ПВХ-шной трубкой, ведущей от аквариумного компрессора, которым кондиционируют рыбок. Все должно быть достаточно герметично. На ПВХ-шную трубку ставим регулируемый зажим, потому что даже самый хилый компрессор дает слишком много воздуха. В идеале нужно сделать серебряную, а не стальную трубку и у меня это даже получилось, но я не смог обезпечить герметичное соединение серебряной трубки с ПВХ-шной. Промежуточные трубки сильно травили воздух (из-за тех же тепловых зазоров), поэтому в итоге я остановился на стальном стерженьке. Конечно, эта проблема разрешима, но нужно просто было потратить на это время и силы и подобрать соответствующую ситуации трубку. Вообще, в этой части я сильно отступил от патента Жако. Сделать такую розочку, как нарисована у него, я не смог (а если честно, то я тогда недостаточно хорошо рассмотрел ее конструкцию).

Здесь следует сделать небольшое отступление и обсудить, насколько неправильно Жако представлял работу своего элемента. Очевидно, что кислород переходит в ионную форму где-то на катоде, по формуле O2+4e-=2O2-, либо какая-то аналогичная реакция, где кислород восстанавливается и соединяется с чем-то. То есть, важно обезпечить тройное соприкосновение воздуха, электролита и катода. Это может происходить при контакте пузырьков воздуха с металлом распылителя и электролитом. То есть, чем больше суммарный периметр всех отверстий распылителя, тем больше должна быть сила тока. Также, если сделать стаканчик с наклонными краями, то поверхность тройного соприкосновения тоже может увеличиться, см. рис.

Другой вариант - это когда на катоде восстанавливается растворенный кислород. В этом случае, площадь тройного соприкосновения не имеет особого значения, а нужно лишь максимизировать площадь поверхности пузырьков, чтобы ускорить растворение кислорода. Правда, в этом случае непонятно, почему растворенный кислород не окисляет уголь непосредственно, без электрохимической реакции (работая "мимо" электрической цепи). Видимо, в этом случае важны каталитические свойства материала стаканчика. Ну ладно, это все лирика. В любом случае, нужно делить струю на мелкие пузырьки. Те попытки сделать это, которые я предпринимал, не были особо успешными.

Для этого нужно было сделать тонкие отверстия, с которыми получилась куча проблем.

Во-первых, тонкие отверстия быстро засоряются, т.к. железо корродирует, ржавчина и остатки угля (вспомним, что там когда-то была паста от ручки) выпадают из стерженька и затыкают отверстия.
Во-вторых, отверстия получаются неравной величины и сложно заставить воздух идти одновременно из всех отверстий.
В-третьих, если два отверстия находятся рядом, то возникает нехорошая тенденция слияния пузырьков еще до их отрыва.
В-четвертых, компрессор подает воздух неравномерно и это тоже как-то влияет на размер пузырьков (видимо, выскакивает один пузырек за один толчок). Все это можно легко наблюдать, налив в прозрачную банку воду и испытав распылитель в ней. Конечно, у щелочи другая вязкость и коэффициент поверхностного натяжения, поэтому придется действовать наугад. Я так и не смог победить эти проблемы и плюс к этому, проблему утечек воздуха из-за тепловых зазоров. Из-за этих утечек распылитель не мог начать работать, поскольку для этого нужно преодолеть силы поверхностного натяжения. Как раз тут полностью проявились недостатки хомутов. Как их не затягивай, при нагреве они все равно ослабевают. В итоге, я перешел к простейшему распылителю из стерженька от шариковой ручки, который давал только одну струю пузырьков. Видимо, чтобы сделать это по-нормальному, нужно тщательно избавиться от утечек, подавать воздух под существенным давлением (больше, чем создаваемое аквариумным компрессором) и через мелкие отверстия.

Эта часть конструкции у меня проработана откровенно плохо...

Сборка

Все. Собираем все вместе. Нужно так все установить на зажимах, чтобы
1. Не было короткого замыкания через несущую конструкцию.
2. Уголек не касался трубки, вдувающей воздух, а также стенок
стаканчика. Это будет трудно, поскольку зазоры малы, зажимы хлипки, а при работе элемента щелочь будет булькать. Также будет действовать архимедова сила, которая будет все смещать куда не надо, и сила поверхностного натяжения, притягивающая уголек к другим предметам. Серебро станет мягким от нагрева. Поэтому, в итоге, я держал уголек пассатижами за конец отводящего электрода. Это было плохо. Для нормальной работы нужно все же сделать крышку (видимо, только из фарфора - глина размокает в щелочи и теряет прочность, может быть, можно обожженую глину использовать). Идея о том, как сделать эту крышку, есть в патенте Жако. Главное, что она должна довольно хорошо удерживать уголек, т.к. даже при небольшом перекосе он будет касаться стаканчика у дна. Для этого она должна иметь большую высоту. Подобрать такую фарфоровую крышку мне не удалось, сделать керамическую из глины - тоже (все, что я пытался делать из глины - быстро трескалось, видимо, я как-то не так обжигал). Единственная небольшая хитрость состоит в том, чтобы использовать металлическую крышку и слой путь даже плохо обожженной глины в качестве теплоизоляции. Этот путь тоже не так прост.

Короче говоря, конструкция элемента была у меня тоже никуда не годной.

Еще неплохо заготовить инструмент, которым можно будет достать кусок уголька, который может отвалиться от электрода и упасть в щелочь. Может отвалиться кусок уголька и упасть в щелочь, тогда будет короткое замыкание. У меня в качестве такого инструмента была гнутая стальная скрепка, которую я держал пассатижами. Подводим провода - один к ручке, другой - к отводящему электроду. Можно припаять, хотя я использовал две металлических пластинки и свинчивал их винтиками (все - от детского металлического конструктора). Главное - понимать, что вся конструкция работает при низком напряжении и все соединения должны быть сделаны хорошо. Измеряем сопротивление при отсутствии электролита между электродами - убеждаемся, что оно велико (хотя бы 20 Ом). Измеряем сопротивления всех соединений - убеждаемся, что они малы. Собираем схему с нагрузкой. Например, сопротивление 1 Ом и последовательно включенный амперметр. У тестеров низкое сопртоивление амперметра бывает только в режиме измерения единиц ампер, желательно это заранее выяснить. Можно либо включить в режим изменения единиц ампер, (ток получится от 0.001 до 0.4 А), либо вместо последовательно включенного амперметра включить параллельно вольтметр (напряжение будет от 0.2 до 0.9 В). Желательно предусмотреть возможность менять условия в ходе опыта, чтобы замерять напряжение раскрытой цепи, ток короткого замыкания и ток с нагрузкой 1 ом. А лучше, если сопротивление тоже можно менять: 0.5 ом, 1 Ом и 2 Ом, чтобы найти то, при котором будет достигнута максимальная мощность.

Включаем компрессор от аквариума и заворачиваем зажим, чтобы воздух шел еле-еле (а, кстати, работоспособность подводящего трубопровода нужно проверить, погружая его в воду. Поскольку плотность щелочи - 2,7, нужно погрузить на соответствующую большую глубину. Полная герметичность не обязательна, главное, чтобы и на такой глубине из конца трубки что-то булькотило.

Меры предосторожности

Далее идет работа с расплавом щелочи. Как бы объяснить, что такое расплав щелочи? Вам попадало в глаза мыло? Неприятно, правда? Так вот, расплав NaOH - это тоже мыло, только разогретое до 400 градусов и в сотни раз более едкое.

Защитные меры при работе с расплавом щелочи строго обязательны!

Прежде всего, строго необходимы хорошие защитные очки . Я близорук, поэтому я одевал двое очков - сверху пластиковые защитные, а под них еще и стеклянные. Защитные очки должны защищать от попадания брызг не только спереди, но и сбоку. В такой амуниции я чувствовал себя в безопасности. Несмотря на защитные очки, приближать лицо к аппарату не рекомендуется вовсе.

Кроме глаз, необходимо защитить и руки. Я все делал очень аккуратно, поэтому под конец уже "замастерился" и работал в футболке. Это полезно, поскольку попадающие иногда на руки мельчайшие брызги щелочи дают ожег, не позволяющий в течение нескольких дней забыть, с каким веществом имеешь дело.

Но на руках, естественно, были перчатки. Сначала резиновые хозяйственные (не самые тонкие), а поверх них - пупырчатые тряпичные пупырышки торчали с задней стороны ладони. Их я смачивал водой, чтобы можно было браться за горячие предметы. В такое паре перчаток руки более-менее защищены. Но нужно следить, чтобы внешние перчатки никогда не были слишком мокрые. Капля воды, попадающая в электролит, мгновенно закипает, при этом электролит очень здорово разбрызгивается. Если такое произошло (а такое у меня происходило раза три), возникают проблемы с органами дыхания. В этих случаях я немедленно задерживал дыхание, не завершая вдох (каякерская практика помогает не впадать в панику в таких ситуациях), и сваливал из кухни подобру-поздорову.

Вообще, для защиты органов дыхания нужна хорошая вентиляция при проведении опыта. В моем случае это был просто сквозняк (дело было летом). Но в идеале это должна быть вытяжка или открытый воздух.

Поскольку брызги щелочи неизбежны, все, что находится в ближайшей окрестности стаканчика, покрывается щелочью в той или иной степени. Если взяться за нее голыми руками, можно получить ожег. Нужно все промывать после завершения опыта, в том числе, перчатки.

Еще на случай ожега у меня всегда была рядом заготовлена емкость с водой и емкость с разбавленным уксусом, для нейтрализации щелочи при сильном ожоге. Уксус ни разу не пригодился, к счастью и я не могу сказать, стоит ли им пользоваться вообще. В случае ожега нужно сразу смывать щелочь большим количеством воды. Еще есть народное средство от ожегов - моча. Оно, вроде бы, тоже помогает.

Собственно работа с элементом

Насыпаем в стаканчик сухой NaOH (я покупал средство "Диггер" для прочистки труб). Можно добавить MgO и другие ингредиенты, например, CaCO3 (зубной порошок или мел) или MgCO3 (у меня был MgO, добытый друзьями). Поджигаем горелку и греем. Поскольку NaOH крайне гигроскопичен, нужно это делать сразу (а пакетик с NaOH - плотно закрывать). Неплохо бы сделать так, чтобы стаканчик был окружен теплом со всех сторон - ток ОЧЕНЬ сильно зависит от температуры. Т.е., сделать импровизированную камеру сгорания и направить в нее пламя горелки (нужно еще следить, чтобы баллончик у горелки не взорвался, по-моему эти горелки достаточно плохо сделаны с этой точки зрения, как я уже писал, для этого нужно, чтобы горячие газы не попадали на баллончик, и лучше держать его в нормальном положении, а не "кверх ногами").
Иногда оказывается удобным подводить пламя горелки сверху, но это - уже после того, как все расплавится. Тогда одновременно греется нагнетательная трубка, отводящий электрод (и уголек через него), верх стакана, где больше всего воздушных пузырьков). Если мне память не изменяет, самый большой результат был получен именно таким образом.

Через какое-то время щелочь начнет плавиться и ее объем уменьшится. Нужно подсыпать порошка, так, чтобы стаканчик был заполнен на 2/3 по высоте (щелочь будет утекать из-за каппилярности и разбрызгивания). Труба подачи воздуха у меня работала плохо (из-за теплового расширения зазоры и неплотности увеличатся, а из-за хорошего теплоотвода щелочь в ней может застывать). Иногда воздух вообще переставал поступать. Чтобы это исправить, я делал следующее:
1. Продув. (временное аккуратное увеличение подачи воздуха)
2. Подьем. (меньше будет напор и воздух вытеснит столб щелочи из
трубы)
3. Прогрев (достать из стаканчика и прогреть горелкой, чтобы щелочь внутри распылителя расплавилась).

Вообще, элемент начинает хорошо работать при температуре красного каления (щелочь начинает светиться). При этом начинает идти пена (это CO2), и раздаются хлопки со вспышками (то ли это водород, то ли CO догорает, я так и не понял).
Мне удалось добиться максимальной мощности 0,025 вт/см2 или 0,176 вт всего с элемента, при сопротивлении нагрузки в 1,1 Ома. При этом я измерял ток амперметром. А можно было измерять и падение напряжения на нагрузке.

Вырождение электролита

В элементе происходит нехорошая побочная реакция

NaOH+CO2=Na2CO3+H2O.

Т.е., через какое-то время (десятки минут) все застынет (температура плавления соды - не помню, но около 800). Некоторое время это можно преодолевать, подсыпая еще щелочи, но в конце концов все равно - электролит застынет. По поводу борьбы с этим - см. другие страницы на этом сайте, начиная со страницы об УТЭ Вообще говоря, можно использовать NaOH, невзирая на эту проблему, о чем и писал Жако в своем патенте. Поскольку есть способы получения NaOH из Na2CO3. Например, вытеснение негашеной известью по реакции Na2CO3+CaOH=2NaOH+CaCO3, после чего CaCO3 можно прокалить и получится опять CaO. Правда, такой способ очень энергоемок и общий КПД элемента при этом упадет очень сильно, да и сложность увеличится. Поэтому, я думаю, что все же нужно искать стабильный состав электролита, который нашли в SARA. Вполне возможно, что это можно сделать, найдя заявки SARA на патенты в базе патентного ведомства США (http://www.uspto.gov), тем более, что за прошедшее время они могли стать уже выданными патентами. Но у меня руки пока не дошли. Собственно, и сама эта идея появилась лишь в ходе подоготовки этих материалов. Видимо, скоро я все же это сделаю.

Итоги, мысли и выводы

Тут я, может быть, немного повторюсь. Можно начинать не с серебра, а сразу с железа. Когда я пробовал использовать жульенницу
из нержстали, у меня получилось плохо. Теперь я понимаю, что первая причина этого - низкая температура и большой зазор между электродами. В своей статье Jacques пишет, что плохая работа с железом связана с тем, что к железу пригорает масло и образуется второй угольный электрод, поэтому нужно очень тщательно очистить железо от малейших следов масла, а также использовать железо
с низким содержанием углерода. Может быть, и так, но я все же думаю, что есть еще одна, более важная причина. Железо - элемент переменной валентности. Оно растворяется и образует "короткое замыкание". В пользу этого говорит и изменение цвета. При использовании серебра цвет электролита не меняется (серебро - самый устойчивый металл к действию расплавленных щелочей). При
использовании железа электролит становится коричневым. При использовании серебра напряжение открытой цепи достигает 0.9В и выше. При использовании железа - существенно меньше (не помню точно, но не более 0.6В) Насчет того, какое железо нужно использовать, чтобы все хорошо работало - есть на других страницах. Еще немного - насчет водяного пара, о котором пишет SARA. С одной стороны, он всем хорош (в теории): не дает железу переходить в раствор (известна реакция разложения ферратов щелочных металлов горячей водой, что-то типа Na2FeO4+H2O=2NaOH+Fe2O3) и вроде бы должен сдвигать равновесие в нехорошей побочной реакции. Я посмотрел термодинамику реакции NaOH+CO2=Na2CO3+H2O с помощью он-лайн программы F*A*C*T (http://www.crct.polymtl.ca/FACT/index.php) При всех температурах равновесие в ней очень сильно сдвинуто вправо, т.е., вода вряд ли может существенно вытеснить углекислый газ из соединения с окисью натрия. Возможно, что ситуация меняется в сплаве NaOH-Na2CO3, либо образуется как бы водный раствор, но я не знаю, как это выяснить. Думаю, что в данном случае практика - критерий истины.

Основное, с чем можно столкнуться при проведении опытов с паром - это конденсация. Если где-то по дороге от места ввода воды в воздушную магистраль температура любой стенки упадет ниже 100С, вода может сконденсироваться, а потом с током воздуха попасть в щелочь в виде капельки. Это очень опасно и нужно этого изо всех сил избегать. Особенно опасно то, что температуру стенок не так легко промерить. Сам я ничего с паром делать не пробовал.

Вообще, конечно, нужно проводить такие работы не в квартире, а, как минимум, на даче, и делать сразу элемент большего размера. Для этого, естественно, понадобится больший горн для обжига, большая "печка" для подогрева элемента, больше исходных материалов. Зато будет гораздо более удобно работать со всеми деталями. Особенно это касается устройства самого элемента, который у меня не имел крышки. Сделать большую крышку - гораздо проще, чем маленькую.

Насчет серебра. Серебро, конечно, стоит не так уж дешево. Но если делать серебряный электрод достаточно тонким, то элемент с серебром может стать рентабельным. Например, пусть удалось сделать электрод толщиной 0,1мм. При пластичности и ковкости серебра это будет легко (серебро можно протягивать сквозь валки в очень тонкую фольгу и я даже хотел это делать, но не нашлось валков). При плотности около 10г/см^3, один кубический сантиметр серебра стоит примерно 150 рублей. Он даст 100 квадратных сантиметров поверхности электрода. Можно получить и 200см^2, если взять два плоских уголька и расположить серебряную пластинку между ними. При достигнутой мной удельной мощности в 0,025вт/см^2, получается мощность в 5 ватт или 30 рублей за ватт, или 30.000 рублей за киловатт. Ввиду простоты конструкции, можно ожидать, что остальные компоненты киловаттного элемента (печка, воздушный насос) будут существенно дешевле. Корпус при этом можно сделать из фарфора, который относительно стоек к расплаву щелочи. В результате получится не слишком дорого, даже по сравнению с бензоэлектростанциями малой мощности. А уж солнечные батареи с ветряками и термоэлектрогенераторами отдыхают далеко позади. Чтобы еще сильно снизить цену, можно попытаться сделать сосуд из посеребренной меди. В этом случае, слой серебра будет еще в 100-1000 раз тоньше. Правда, мои опыты с мельхиоровой ложкой закончились неудачно, так что неясно, насколько серебряное покрытие окажется стойким. То есть, даже использование серебра открывает довольно неплохие перспективы. Единственное, что может тут оказаться неудачным - это если серебро будет недостаточно стойким.

Еще о материалах корпуса. Якобы, при работе элемента большое значение имеют пероксиды натрия, например, Na2O2, который должен возникать при продуве воздуха в NaOH. При высокой температуре пероксид разъедает практически все вещества. Проводились опыты по измерению потери веса тиглями из различных материалов, в которых содержался расплав пероксида натрия. Самым стойким оказался цирконий, за ним - железо, затем никель, затем фарфор. Серебро не попало в четверку лидеров. К сожалению, не помню точно, насколько серебро устойчиво. Там еще было написано про хорошую стойкость Al2O3 и МgO. Но второе место, которое занимает железо, вселяет оптимизм.

Вот, собственно, и все.


Водородные топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения и превращения тепловой энергии в механическую.

Описание:

Водородные топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения и превращения тепловой энергии в механическую. Водородный топливный элемент – это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию. Водород-воздушный топливный элемент с протон-обменной мембраной (PEMFC) является одной из наиболее перспективных технологий топливных элементов .

Протон-проводящая полимерная мембрана разделяет два электрода - анод и катод. Каждый электрод представляет собой угольную пластину (матрицу) с нанесённым катализатором. На катализаторе анода молекулярный водород диссоциирует и отдает электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.


На катализаторе катода молекула кислорода соединяется с электроном (который подводится из электрической цепи) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Из водородных топливных элементов изготавливают мембранно-электродные блоки, являющиеся ключевым генерирующим элементом энергетической системы.

Преимущества водородных топливных элементов по сравнению с традиционными решениями:

– увеличенная удельная энергоемкость (500 ÷ 1000 Вт*ч/кг),

расширенный диапазон эксплуатационных температур (-40 0 С / +40 0 С),

– отсутствие теплового пятна, шума и вибрации,

надежность при холодном пуске,

– практически неограниченный срок хранения энергии (отсутствие саморазряда),

возможность изменения энергоемкости системы за счет изменения количества топливных баллончиков, что обеспечивает почти неограниченную автономность,

– возможность обеспечить практически любую разумную энергоемкость системы за счет изменения емкости хранилища водорода,

высокая энергоемкость,

– толерантность к примесям в водороде,

длительный срок службы,

– экологичность и бесшумность работы.

Применение:

системы энергоснабжения для БПЛА,

портативные зарядные устройства,

источники бесперебойного питания,

другие устройства.