Структурная схема автоматизированных систем контроля и управления. Схемы управления в асутп

Для общего ознакомления с системой предназначена структурная схема (рис. 6.2). Структурная схема - это схема, определяющая основные функциональные части изделия, их назначение и взаимосвязи .

Структура - это совокупность частей автоматизированной системы, на которые она может быть разделена по определенному признаку, а также пути передачи воздействия между ними. В общем случае любая система может быть представлена следующими структурами:

  • ? конструктивной - когда каждая часть системы представляет собой самостоятельное конструктивное целое;
  • ? функциональной - когда каждая часть системы предназначена для выполнения определенной функции (полные сведения о функциональной структуре с указанием контуров регулирования даются на схеме автоматизации);

Рис. 6.2.

? алгоритмической - когда каждая часть системы предназначена для выполнения определенного алгоритма преобразования входной величины, являющегося частью алгоритма функционирования.

Надо отметить, что для простых объектов автоматизации структурные схемы могут не приводиться.

Требования к данным схемам устанавливает РТМ 252.40 «Автоматизированные системы управления технологическими процессами. Структурные схемы управления и контроля». Согласно этому документу конструктивные структурные схемы содержат: технологические подразделения объекта автоматизации; пункты

контроля и управления, в том числе не входящие в состав разрабатываемого проекта, но имеющие связь с проектируемой системой; технический персонал и службы, обеспечивающие оперативное управление и нормальное функционирование технологического объекта; основные функции и технические средства, обеспечивающие их реализацию в каждом пункте контроля и управления; взаимосвязи между частями объекта автоматизации.

Элементы структурной схемы изображают в виде прямоугольников. Отдельные функциональные службы и должностные лица допускается изображать кружком. Внутри прямоугольников раскрывается структура данного участка. Функции автоматизированной системы управления технологическим процессом указываются условными обозначениями, расшифровка которых дается в таблице над основной надписью по ширине надписи. Взаимосвязь между элементами структурной схемы изображают сплошными линиями, слияния и разветвления - линиями с изломом. Толщина линий следующая: условных изображений - 0,5 мм, линий связи - 1 мм, остальных - 0,2...0,3 мм. Размеры элементов структурных схем не регламентируются и выбираются по усмотрению.

В примере (рис. 6.2) приведен фрагмент выполнения конструктивной схемы управления и контроля станции водоочистки. В нижней части раскрыты технологические подразделения объекта автоматизации; в прямоугольниках средней части - основные функции и технические средства пунктов местного управления агрегатами; в верхней части - функции и технические средства пункта централизованного управления станцией. Поскольку схема занимает несколько листов, обозначены переходы линий связи па последующие листы и показан обрыв прямоугольника, раскрывающего структуру объекта автоматизации.

На линиях связи между отдельными элементами системы управления может быть указано направление передаваемой информации или управляющих воздействий; при необходимости линии связи могут быть помечены буквенными обозначениями вида связи, па- пример: К - контроль, С - сигнализация, ДУ - дистанционное управление, АР - автоматическое регулирование, ДС - диспетчерская связь, ПГС - производственная телефонная (громкоговорящая) связь и т.п.

Лекция 9

При разработке проекта автоматизации в первую очередь необходимо решить, с каких мест те или иные участки объекта будут управляться, где будут размещаться пункты управления, операторские помещения, какова должна быть взаимосвязь между ними, т.е. необходимо решить вопросы выбора структуры управления. Под структурой управления понимается совокупность частей автоматической системы, на которые она может быть разделена по определенному признаку, а также пути передачи воздействий между ними. Графическое изображение структуры управления называется структурной схемой. Хотя исходные данные для выбора структуры управления и ее иерархии с той или иной степенью детализации оговариваются заказчиком при выдаче задания на проектирование, полная структура управления должна разрабатываться проектной организацией.

В самом общем виде структурная схема системы автоматизации представлена на рисунке 9.1. Система автоматизации состоит из объекта автоматизации и системы управле­ния этим объектом. Благодаря определен­ному взаимодействию между объектом авто­матизации и системой управления система автоматизации в целом обеспечивает тре­буемый результат функционирования объек­та, характеризующийся параметрами х 1 х 2 …х n

Работа комплексного объекта автоматизации характеризуется рядом вспомогательных па­раметров у 1 , у 2 , ..., y j , которые также должны контролироваться и регулироваться.

В процессе работы на объект посту­пают возмущающие воздействия f 1 , f 2 , ...,f i , вызывающие отклонения параметров х 1 , х 2 , х n от их требуемых значений. Информа­ция о текущих значениях х 1 , х 2 , х n , y 1 , y 2 , y n поступает в систему управления и сравнивается с предписанными им значе­ниями g j , g 2 ,..., g k , в результате чего система управления вырабатывает управляющие воз­действия Е 1 , E 2 , ..., Е m для компенсации от­клонений выходных параметров.

Рисунок 9.1 – Структурная схема системы автоматизации

Выбор структуры управления объектом автоматизации оказывает существенное влияние на эффективность его работы, снижение относительной стоимости системы управления, ее надежности, ремонтоспособности и т.д.



В общем случае любая система может быть представлена:

· конструктивной структурой;

· функциональной структурой;

· алгоритмической структурой.

В конструктивной структуре системы каждая ее часть представляет собой самостоятельное конструктивное целое (рисунок 9.1).

В конструктивной схеме присутствуют:

· объект и система автоматизации;

· информационные и управляющие потоки.

В алгоритмической структуре каждая часть предназначена для выполнения определенного алгоритма преобразования входного сигнала, являющегося частью всего алгоритма функционирования системы.

Проектировщик разрабатывает алгоритмическую структурную схему (АСС) объекта автоматизации по дифференциальным уравнениям или графическим характеристикам. Объект автоматизации представляется в виде нескольких звеньев с различными передаточными функциями, соединенными между собой. В АСС отдельные звенья могут не иметь физической целостности, но соединение их (схема в целом) по статическим и динамическим свойствам, по алгоритму функционирования должно быть эквивалентно объекту автоматизации. На рисунке 9.2 дан пример АСС АСУ.

Рисунок 9.2 – Алгоритмическая структурная схема, представленная в виде простых звеньев

В функциональной структуре каждая часть предназначена для выполнения определенной функции.

В проектах автоматизации изображают конструктивные структурные схемы с элементами функциональных признаков. Полные сведения о функциональной структуре с указанием локальных контуров регулирования, каналов управления и технологического контроля приводятся в функцио­нальных схемах (лекция 10).

Структурная схема АСУ ТП разрабатывается на стадии “Проект” при двухстадийном проектировании и соответствует составу системы. В качестве примера на рисунке 9.3 приведена структурная схема управления серно-кислотным производством.

Рисунок 9.3 – Фрагмент структурной схемы управления и контроля серно-кислотным производством:

1 – линия связи с цеховой химической лабораторией; 2 – линия связи с пунктами контроля и управления кислотным участком; 3 – линия связи с пунктом контроля и управления III и IV технологическими линиями

На структурной схеме отображаются в общем виде основные решения проекта по функциональной, организационной и технической структурам АСУ ТП с соблюдением иерархии системы и взаимосвязей между пунктами контроля и управления, оперативным персоналом и технологическим объектом управления. Принятые при выполнении структурной схемы принципы организации оперативного управления технологическим объектом, состав и обозначения отдельных элементов структурной схемы должны сохраняться во всех проектных документах на АСУ ТП.

Таблица 9.1 – Функции АСУ ТП и их условные обозначения на рисунке 9.3

Условное обозначение Наименование
Контроль параметров Дистанционное управление технологическим оборудованием и исполнительными устройствами Измерительное преобразование Контроль и сигнализация состояния оборудования и отклонения параметров Стабилизирующее регулирование Выбор режима работы регуляторов и ручное управление задатчиками Ручной ввод данных Регистрация параметров Расчет технико-экономических показателей Учет производства и состав­ления данных за смену Диагностика технологических линий (агрегатов) Распределение нагрузок технологических линий (агрегатов) Оптимизация отдельных технологических процессов Анализ состояния технологического процесса Прогнозирование основных показателей производства Оценка работы смены Контроль выполнения плановых заданий Контроль проведения ремонтов Подготовка и выдача оперативной информации в АСУП Получение производственных ограничений и заданий от АСУП

На структурной схеме показывают следующие элементы:

1. технологические подразделения (отделения, участки, цеха, производства);

2. пункты контроля и управления (местные щиты, операторские и диспетчерские пункты, блочные щиты и т.д.);

3. технологический персонал (эксплуатационный) и дополнительные специальные службы, обеспечивающие оперативное управление;

4. основные функции и технические средства, обеспечивающие их реализацию в каждом пункте контроля и управления;

5. взаимосвязь между подразделениями и с вышестоящей АСУ.

Функции АСУ ТП шифруют и на схеме обозначают в виде чисел. Условные обозначения функций АСУТП на рисунке 9.3 приведены в таблице 9.1.

Структурная схема системы автоматизации выполняется по узлам и включает все элементы системы от датчика до регулирующего органа с указанием места расположения, показывая их взаимосвязи между собой.

АСУ – аббревиатура, которая расшифровывается как Автоматизированные Системы Управления. Ответ на вопрос, что такое АСУ, можно сформулировать следующим образом: это совокупность технических систем и процессов, организационных комплексов и научных методов, которые позволяют обеспечить оптимальное управление сложным техническим процессом или объектом, а также коллективом людей, который имеет одну единую цель.

Вконтакте

Структурная схема АСУ

В структуре любой автоматизированной системы управления можно выделить следующие компоненты:

  1. Основная часть – включает в себя математическое и информационное обеспечение и техническую часть.
  2. Функциональна часть – подразумевает конкретные управленческие функции и ряд взаимосвязанных программ.

Системы могут быть элементарными или масштабными и сложными.

Принято различать две структурные разновидности таких систем - автоматизированная система управления техническим процессом (АСУТП) и система организационного управления (АСОУ).

Различия среди этих систем заключаются в характеристиках объекта, которым система будет управлять. АСУТП выстраиваются для управления сложными техническими объектами, механизмами, аппаратами, машинами. АСОУ призваны контролировать функционирование коллективы людей. Соответственно применению АСУ, будут различаться и способы передачи информации – это могут быть документы или разнообразные физические сигналы.

Существует также аббревиатура САУ – система автоматического управления. Её особенность заключается в том, что она некоторое время может действовать без вмешательства человека. Применяются такие системы для управления отельными небольшими объектами.

Применение и основные функции АСУ

АСУ нашли широкое применение в разнообразных сферах промышленного производства. Основные функции систем сводятся к следующему:

Основные принципы АСУ

Впервые принципы действия автоматизированных систем управления, порядок их разработки и создания были сформулированы В.М. Глушковым.

Информационная база АСУ

Информационной базой АСУ можно назвать всю совокупность информации, размещённой на машинных носителях и необходимых для нормального функционирования системы.

Как правило, вся информационная база подразделяется условно на три сектора – генеральный, производный и оперативный.

Технические характеристики АСУ

Под технической базой АСУ принято понимать все технические средства, которые применяют для сбора, накопления и обработки информации, а также для её отображения и передачи. Сюда же можно отнести и исполнительные узлы системы, которые воздействуют на объект управления.

Основные технические элементы и оборудование АСУ – это электронно-вычислительная техника, которая обеспечивает накопление и обработку всех данных, циркулирующих внутри системы. Такая техника позволяет моделировать производственные процессы и строить предложения для управления.

Для построения и управления АСУ применяются два типа электронно-вычислительной техники - учётно-регулирующий и информационно-расчётный.

Информационно-расчётное оборудование находится на высшей иерархической ступени в управленческой системе. Их задачей является решение всех вопросов, связанных с централизованным управлением объектом. Для таких механизмов характерно высокое быстродействие, наличие системы прерываний, переменная длина слова, слоговая обработка вводных данных.

Нижний уровень системы управления, как правило, отдаётся учётно-регулирующим механизмам и оборудованию. Эти механизмы, как правило, размещаются непосредственно на участках или в производственных цехах. В их задачу входит сбор вводных данных от объектов управления и первичная обработка этой информации с последующей передачей её в информационно-расчётное отделение и получением плановой директивной информации. Кроме того, учётно-регулирующая часть оборудования занимается локальными расчётами и вырабатывает управляющие воздействия на объекты управления в случае возникновения отклонений от расчётных функций. Эта часть системы управления имеет хорошо развитую связь с большим количеством источников информации и устройств регулирования.

Механические средства сбора и отображения информации

Если системой предусмотрен сбор и обработка информации с участием человека, в неё включаются различные регистраторы, которые позволяют получать исходные данные непосредственно с рабочих мест. Сюда же относятся всевозможные температурные датчики, таймеры, измерители количества произведённых деталей и прочее подобное оборудование. Монтируются также автоматические фиксаторы отклонений в производственном процессе, которые регистрируют и передают в систему сведения об отсутствии материалов, инструментария, транспортных средств для отправки изготовленных продуктов, а также неправильности в работе станков. Подобная аппаратура устанавливается не только в производственных помещениях, но и на складах для хранения сырья и готовой продукции.

К средствам отображения данных относятся все устройства, позволяющие вывести информацию в наиболее доступном для человека виде. Сюда относятся всевозможные мониторы, табло и экраны, печатающие устройства, терминалы, индикаторы и пр. Эти устройства связаны напрямую с центральным процессором вычислительной машины и могут выдавать информацию либо регламентировано, либо эпизодически – по запросу оператора или же в случае возникновения аварийной ситуации.

В состав технической базы автоматизированных систем управления входят также разнообразные виды оргтехники, контрольно-измерительные и учётные приборы, которые обеспечивают нормальное функционирование основных технических узлов.

Основным элементом системы являются блоки управления (БУ) электролизёром. Каждый блок управляет двумя ваннами, кроме БУ. установленных у торцов корпусов, каждый из которых управляет одной ванной. Соответственно, в каждом корпусе на 98 ванн (1 и 2 корпуса электролизного цеха) установлено по 50 БУ. Все блоки объединены в единую сеть корпуса электролиза, В эту же сеть включены компьютер верхнего уровня (АРМ оператора корпуса) и контроллер тока/напряжения серии (КТНС). АРМ операторов корпусов соединены по сети Ethernet с АРМ технолога.

Блок управления ТРОЛЛЬ

Блоки управления ТРОЛЛЬ производятся на заводе СПУ (Санкт-Петербург). При проектировании блока и выборе комплектующих учитывались многие типичные для России неисправности. Например, кнопки ручного управления и пускатели двигателей не имеют движущихся частей, что исключает их залипание от попадания влаги или грязи. Реализована, разумеется, и многоуровневая программная защита от различных аппаратных сбоев.

Простота и удобство обслуживания обеспечиваются модульной конструкцией на разъёмах, что делает возможным быструю замену отдельных блоков.

БУ ТРОЛЛЬ установлены в корпусе электролиза рядом с электролизёрами, Размеры блока составляют 1600х600х400 мм (высота/ширина/глубина).

В нижней части блока находятся силовые модули управления двигателями привода анодной рамы, а также клеммные колодки, к которым подключается оборудование электролизёра и подводится питание БУ. На дверце нижней части расположены автоматы-расцепители питания двигателей.

В верхней части блока находится контроллер MicroPC фирмы Octagon вместе с модулями оптической развязки фирмы Grayhill. Все входы и выходы блока управления имеют гальваническую развязку. В верхней же части находятся модули термостатирования БУ, в том числе нагреватели и вентиляторы, обеспечивающие постоянную положительную температуру внутри блока.

На дверце верхней части расположена панель индикации и управления блоком, состоящая из двух светодиодных дисплеев индикации параметров работы электролизёров, совмещенных с мембранными клавиатурами управления электролизёрами. Посередине расположена мембранная клавиатура выбора режима индикации. Панель, управляемая отдельным микроконтроллером, позволяет:

отображать до 64 различных параметров работы электролизёров и блока управления;

задавать уставочные значения параметров управления электролизёрами;

осуществлять переключение между ручным, автоматическим и специальными режимами управления;

управлять в ручном режиме двигателями анода и системами автоматической подачи глинозема.

Следует отметить, что все сигналы ручного управления проходят через контроллер MicroPC. Надежность канала (клавиатура контроллер М1сгоРС модули опторазвязки оборудование) не уступает применяемым обычно для этого релейным схемам, при этом контроллер «знает» о ручных воздействиях, протоколирует их и учитывает при дальнейшем автоматическом управлении, а также может ограничивать или запрещать их при определенных условиях, исправляя грубые ошибки персонала.

Над панелью размещены лампы индикации 3-фазного напряжения двигателей и аварийной сигнализации.

В состав контроллера блока управления входят: процессорная плата 5025А (процессор - i386SX-25 МЩ; оперативная память - 1 Мбайт; энергонезависимая память - 512 Кбайт; флэш-диск - 512 Кбайт; операционная система - ROM-DOS 6.22), две платы ввода/вывода 5648 и сетевая плата Arcnet 5560. Контроллер получает сигналы с 2 аналоговых и 25 дискретных входов и управляет 22 дискретными выходами (все входы/выходы с оптической развязкой 1.5-4 кВ).Дополнительно может быть установлено до 14 аналоговых входов, 34 дискретных входов и 6 дискретных выходов. Следует отметить, что характеристики контроллера на порядок превосходят аналогичные параметры других систем, где типичный контроллер пмсе"1 1 быстродействие 16-разрядного процессора с тактовой частотой

имеет быстродействие 16-разрядного процессора с тактовой частотой 10-16МГц при памяти в 16-б4 Кбайт. Избыточная же мощность контроллера MicroPC позволила реализовать некоторые алгоритмы, принципиально невозможные в других системах. Блоки поставляются с оригинальным программным обеспечением, соответствующим реальному оборудованию завода (оперативная доработка базового ПО в соответствии с ТЗ заказчика). Программное обеспечение контроллера является открытым. Добавление новых или изменение существующих алгоритмов возможно не только при поставке специалистами АО ТоксСофт. но и заводскими программистами в процессе эксплуатации.

Разработанные для системы алгоритмы были проверены и отработаны на Саянском алюминиевом заводе в течение двух лет. В процессе отработки не было ни одного сбоя в работе алгоритмов и была подтверждена эффективность их работы с различными типами электролизёров.

Изучение и математический анализ АСУ существенно облегчаются, если ее предварительно мысленно расчленить на типовые элементы, выявить физические взаимосвязи между ними и отобразить эти взаимосвязи схематично в какой-либо условной форме.

АСУ может быть разделена на части по различным признакам: назначению частей, алгоритмам преобразования информации, конструктивной обособленности. Соответственно различают следующие структуры и структурные схемы АСУ:

функциональную;

алгоритмическую;

конструктивную.

При этом будем понимать, что:

структура– совокупность связанных между собой частей чего-либо целого;

структурная схема графическое изображение структуры.

Функциональные и алгоритмические схемы состоят из условных изображений элементов и звеньев (обычно в виде прямоугольников) и различных связей, изображаемых в виде линий со стрелками, показывающих направление передачи воздействий. Каждая линия соответствует обычно одному сигналу или одному воздействию. Около каждой линии указывают физическую величину, характеризующую данное воздействие.

Обычно вначале составляют функциональную схему АСУ, а затем – алгоритмическую. Структурные схемы могут составляться с большей или меньшей степенью детализации. Схемы, на которых показаны лишь главные или укрупненные части АСУ, называются обобщенными (см. рис.1).

Функциональная структурная схема – схема, отражающая функции (целевые назначения) отдельных частей АСУ.

Такими функциями могут быть:

§ получение информации о состоянии объекта управления;

§ преобразование сигналов;

§ сравнение сигналов и т.п.

В качестве частей функциональной структуры (схемы) АСУ рассматриваются функциональныеустройства. Названия устройств указывают на выполнение определенной функции. Например:

§ датчик;

§ усилитель;

§ блок сравнения;

§ управляющий блок;

§ исполнительное устройство и т.п.

Д – датчик – предназначен для получения сигнала, пропорционального определенному

воздействию;

ЭС – элемент сравнения – служит для получения сигнала, пропорционального отклонению управляемой величины x(t) от задающего воздействия x з (t);

КУ – корректирующее устройство – предназначено для улучшения качества управления;

УПБ – усилительно-преобразующий блок – служит для усиления сигнала и придания ему определенной формы;

РО – регулирующий орган – служит для непосредственного воздействия на регулируемую среду (примеры РО: вентиль, задвижка, тиристор и т.п.);

ИУ – исполнительное устройство – предназначено для приведения в действие регулирующего органа (примеры ИУ: электродвигатель, электромагнит и т.п.).

Алгоритмическая схема – схема, представляющая собой совокупность взаимосвязанных алгоритмических звеньев и характеризующая алгоритмы преобразования информации в АСУ.

При этом, алгоритмическое звено - часть алгоритмической структуры АСУ, соответствующая определенному математическому или логическому алгоритму преобразования сигнала. Если алгоритмическое звено выполняет одну простейшую математическую или логическую операцию, то его называют элементарным алгоритмическим звеном . На схемах алгоритмические звенья изображают прямоугольниками, внутри которых записывают соответствующие операторы преобразования сигналов. Иногда вместо операторов в формульном виде приводят графики зависимости выходной величины от входной или графики переходных функций.

Различают следующие виды алгоритмических звеньев:

§ статическое;

§ динамическое;

§ арифметическое;

§ логическое.


Статическое звено – звено, преобразующее входной сигнал в выходной мгновенно (без инерции).

Динамическое звено звено, преобразующее входной сигнал в выходной в соответствии с операциями интегрирования и дифференцирования во времени.

Арифметическое звено звено, осуществляющее одну из арифметических операций: суммирование, вычитание, умножение, деление. Наиболее часто встречающееся в автоматике арифметическое звено – звено, выполняющее алгебраическое суммирование сигналов, называют сумматором.

Логическое звено звено, выполняющее какую-либо логическую операцию: логическое умножение («И»), логическое сложение («ИЛИ»), логическое отрицание («НЕ») и т.д.Входной и выходной сигналы логического звена являются обычно дискретными и рассматриваются как логические переменные.

3. Моделирование в ТАУ

Цель любого управления – изменить состояние объекта нужным образом (в соответствии с заданием). Теория автоматического регулирования должна ответить на вопрос: «как построить регулятор, который может управлять данным объектом так, чтобы достичь цели?» Для этого разработчику необходимо знать, как система управления будет реагировать на разные воздействия, то есть нужна модель системы : объекта, привода, датчиков, каналов связи, возмущений, шумов.



Модель – это объект, который мы используем для изучения другого объекта (оригинала ).

Модель и оригинал должны быть в чем-то похожи, чтобы выводы, сделанные при изучении модели, можно было бы (с некоторой вероятностью) перенести на оригинал. Нас будут интересовать в первую очередь математические модели , выраженные в виде формул. Кроме того, в науке используются также описательные (словесные), графические, табличные и другие модели.

Как строятся модели?

Во-первых, математические модели могут быть получены теоретически из законов физики (законы сохранения массы, энергии, импульса). Эти модели описывают внутренние связи в объекте и, как правило, наиболее точны.

Рассмотрим RLC- цепочку, то есть последовательное соединение резистора с сопротивлением R омах ), катушки индуктивности с индуктивностью L и конденсатора с емкостью C . Она может быть описана с помощью двух уравнений, которые и определяют математическую модель цепи:

Второй способ – построение модели в результате наблюдения за объектом при различных входных сигналах. Объект рассматривается как «черный ящик», то есть, его внутреннее устройство неизвестно. Мы смотрим, как он реагирует на входные сигналы, и стараемся подстроить модель так, чтобы выходы модели и объекта совпадали как можно точнее при разнообразных входах.

На практике часто используется смешанный способ: структура модели (вид уравнения, связывающего вход и выход) определяется из теории, а коэффициенты находят опытным путем. Например, общий вид уравнений движения корабля хорошо известен, однако в этих уравнениях есть коэффициенты, которые зависят от многих факторов (формы корпуса, шероховатости поверхности и т.п.), так что их крайне сложно (или невозможно) найти теоретически. В этом случае для определения неизвестных коэффициентов строят масштабные модели и испытывают их в бассейнах по специальным методикам. В авиастроении для тех же целей используют аэродинамические трубы.

Для любого объекта управления можно построить множество различных моделей, которые будут учитывать (или не учитывать) те или иные факторы. Обычно на первом этапе стараются описать объект как можно более подробно, составить детальную модель. Однако при этом будет трудно теоретически рассчитать закон управления, который отвечает заданным требованиям к системе. Даже если мы сможем его рассчитать, он может оказаться слишком сложным для реализации или очень дорогим.

С другой стороны, можно упростить модель объекта, отбросив некоторые «детали», которые кажутся разработчику маловажными. Для упрощенной модели закон управления также получается проще, и с его помощью часто можно добиться желаемого результата. Однако в этом случае нет гарантии, что он будет так же хорошо управлять полной моделью (и реальным объектом). Обычно используется компромиссный вариант. В этом случае, наоборот, начинают с простых моделей, стараясь спроектировать регулятор так, чтобы он «подходил» и для сложной модели. Это свойство называют робастностью (грубостью ) регулятора (или системы), оно означает нечувствительность к ошибкам моделирования. Затем проверяют работу построенного закона управления на полной модели или на реальном объекте. Если получен отрицательный результат (простой регулятор «не работает»), усложняют модель, вводя в нее дополнительные подробности. И все начинается сначала.